Как вычислить ошибку уравнения

In statistics, the mean squared error (MSE)[1] or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss.[2] The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate.[3] In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution).

The MSE is a measure of the quality of an estimator. As it is derived from the square of Euclidean distance, it is always a positive value that decreases as the error approaches zero.

The MSE is the second moment (about the origin) of the error, and thus incorporates both the variance of the estimator (how widely spread the estimates are from one data sample to another) and its bias (how far off the average estimated value is from the true value).[citation needed] For an unbiased estimator, the MSE is the variance of the estimator. Like the variance, MSE has the same units of measurement as the square of the quantity being estimated. In an analogy to standard deviation, taking the square root of MSE yields the root-mean-square error or root-mean-square deviation (RMSE or RMSD), which has the same units as the quantity being estimated; for an unbiased estimator, the RMSE is the square root of the variance, known as the standard error.

Definition and basic properties[edit]

The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled). The definition of an MSE differs according to whether one is describing a predictor or an estimator.

Predictor[edit]

If a vector of n predictions is generated from a sample of n data points on all variables, and Y is the vector of observed values of the variable being predicted, with hat{Y} being the predicted values (e.g. as from a least-squares fit), then the within-sample MSE of the predictor is computed as

{displaystyle operatorname {MSE} ={frac {1}{n}}sum _{i=1}^{n}left(Y_{i}-{hat {Y_{i}}}right)^{2}.}

In other words, the MSE is the mean {textstyle left({frac {1}{n}}sum _{i=1}^{n}right)} of the squares of the errors {textstyle left(Y_{i}-{hat {Y_{i}}}right)^{2}}. This is an easily computable quantity for a particular sample (and hence is sample-dependent).

In matrix notation,

{displaystyle operatorname {MSE} ={frac {1}{n}}sum _{i=1}^{n}(e_{i})^{2}={frac {1}{n}}mathbf {e} ^{mathsf {T}}mathbf {e} }

where e_{i} is {displaystyle (Y_{i}-{hat {Y_{i}}})} and {displaystyle mathbf {e} } is the {displaystyle ntimes 1} column vector.

The MSE can also be computed on q data points that were not used in estimating the model, either because they were held back for this purpose, or because these data have been newly obtained. Within this process, known as statistical learning, the MSE is often called the test MSE,[4] and is computed as

{displaystyle operatorname {MSE} ={frac {1}{q}}sum _{i=n+1}^{n+q}left(Y_{i}-{hat {Y_{i}}}right)^{2}.}

Estimator[edit]

The MSE of an estimator hat{theta} with respect to an unknown parameter theta is defined as[1]

{displaystyle operatorname {MSE} ({hat {theta }})=operatorname {E} _{theta }left[({hat {theta }}-theta )^{2}right].}

This definition depends on the unknown parameter, but the MSE is a priori a property of an estimator. The MSE could be a function of unknown parameters, in which case any estimator of the MSE based on estimates of these parameters would be a function of the data (and thus a random variable). If the estimator hat{theta} is derived as a sample statistic and is used to estimate some population parameter, then the expectation is with respect to the sampling distribution of the sample statistic.

The MSE can be written as the sum of the variance of the estimator and the squared bias of the estimator, providing a useful way to calculate the MSE and implying that in the case of unbiased estimators, the MSE and variance are equivalent.[5]

{displaystyle operatorname {MSE} ({hat {theta }})=operatorname {Var} _{theta }({hat {theta }})+operatorname {Bias} ({hat {theta }},theta )^{2}.}

Proof of variance and bias relationship[edit]

{displaystyle {begin{aligned}operatorname {MSE} ({hat {theta }})&=operatorname {E} _{theta }left[({hat {theta }}-theta )^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]+operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}+2left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)left(operatorname {E} _{theta }[{hat {theta }}]-theta right)+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+operatorname {E} _{theta }left[2left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)left(operatorname {E} _{theta }[{hat {theta }}]-theta right)right]+operatorname {E} _{theta }left[left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+2left(operatorname {E} _{theta }[{hat {theta }}]-theta right)operatorname {E} _{theta }left[{hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right]+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&&operatorname {E} _{theta }[{hat {theta }}]-theta ={text{const.}}&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+2left(operatorname {E} _{theta }[{hat {theta }}]-theta right)left(operatorname {E} _{theta }[{hat {theta }}]-operatorname {E} _{theta }[{hat {theta }}]right)+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&&operatorname {E} _{theta }[{hat {theta }}]={text{const.}}&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&=operatorname {Var} _{theta }({hat {theta }})+operatorname {Bias} _{theta }({hat {theta }},theta )^{2}end{aligned}}}

An even shorter proof can be achieved using the well-known formula that for a random variable {textstyle X}, {textstyle mathbb {E} (X^{2})=operatorname {Var} (X)+(mathbb {E} (X))^{2}}. By substituting {textstyle X} with, {textstyle {hat {theta }}-theta }, we have

{displaystyle {begin{aligned}operatorname {MSE} ({hat {theta }})&=mathbb {E} [({hat {theta }}-theta )^{2}]&=operatorname {Var} ({hat {theta }}-theta )+(mathbb {E} [{hat {theta }}-theta ])^{2}&=operatorname {Var} ({hat {theta }})+operatorname {Bias} ^{2}({hat {theta }})end{aligned}}}

But in real modeling case, MSE could be described as the addition of model variance, model bias, and irreducible uncertainty (see Bias–variance tradeoff). According to the relationship, the MSE of the estimators could be simply used for the efficiency comparison, which includes the information of estimator variance and bias. This is called MSE criterion.

In regression[edit]

In regression analysis, plotting is a more natural way to view the overall trend of the whole data. The mean of the distance from each point to the predicted regression model can be calculated, and shown as the mean squared error. The squaring is critical to reduce the complexity with negative signs. To minimize MSE, the model could be more accurate, which would mean the model is closer to actual data. One example of a linear regression using this method is the least squares method—which evaluates appropriateness of linear regression model to model bivariate dataset,[6] but whose limitation is related to known distribution of the data.

The term mean squared error is sometimes used to refer to the unbiased estimate of error variance: the residual sum of squares divided by the number of degrees of freedom. This definition for a known, computed quantity differs from the above definition for the computed MSE of a predictor, in that a different denominator is used. The denominator is the sample size reduced by the number of model parameters estimated from the same data, (np) for p regressors or (np−1) if an intercept is used (see errors and residuals in statistics for more details).[7] Although the MSE (as defined in this article) is not an unbiased estimator of the error variance, it is consistent, given the consistency of the predictor.

In regression analysis, «mean squared error», often referred to as mean squared prediction error or «out-of-sample mean squared error», can also refer to the mean value of the squared deviations of the predictions from the true values, over an out-of-sample test space, generated by a model estimated over a particular sample space. This also is a known, computed quantity, and it varies by sample and by out-of-sample test space.

Examples[edit]

Mean[edit]

Suppose we have a random sample of size n from a population, X_{1},dots ,X_{n}. Suppose the sample units were chosen with replacement. That is, the n units are selected one at a time, and previously selected units are still eligible for selection for all n draws. The usual estimator for the mu is the sample average

overline{X}=frac{1}{n}sum_{i=1}^n X_i

which has an expected value equal to the true mean mu (so it is unbiased) and a mean squared error of

{displaystyle operatorname {MSE} left({overline {X}}right)=operatorname {E} left[left({overline {X}}-mu right)^{2}right]=left({frac {sigma }{sqrt {n}}}right)^{2}={frac {sigma ^{2}}{n}}}

where sigma ^{2} is the population variance.

For a Gaussian distribution, this is the best unbiased estimator (i.e., one with the lowest MSE among all unbiased estimators), but not, say, for a uniform distribution.

Variance[edit]

The usual estimator for the variance is the corrected sample variance:

{displaystyle S_{n-1}^{2}={frac {1}{n-1}}sum _{i=1}^{n}left(X_{i}-{overline {X}}right)^{2}={frac {1}{n-1}}left(sum _{i=1}^{n}X_{i}^{2}-n{overline {X}}^{2}right).}

This is unbiased (its expected value is sigma ^{2}), hence also called the unbiased sample variance, and its MSE is[8]

{displaystyle operatorname {MSE} (S_{n-1}^{2})={frac {1}{n}}left(mu _{4}-{frac {n-3}{n-1}}sigma ^{4}right)={frac {1}{n}}left(gamma _{2}+{frac {2n}{n-1}}right)sigma ^{4},}

where mu _{4} is the fourth central moment of the distribution or population, and gamma_2=mu_4/sigma^4-3 is the excess kurtosis.

However, one can use other estimators for sigma ^{2} which are proportional to S^2_{n-1}, and an appropriate choice can always give a lower mean squared error. If we define

{displaystyle S_{a}^{2}={frac {n-1}{a}}S_{n-1}^{2}={frac {1}{a}}sum _{i=1}^{n}left(X_{i}-{overline {X}},right)^{2}}

then we calculate:

{displaystyle {begin{aligned}operatorname {MSE} (S_{a}^{2})&=operatorname {E} left[left({frac {n-1}{a}}S_{n-1}^{2}-sigma ^{2}right)^{2}right]&=operatorname {E} left[{frac {(n-1)^{2}}{a^{2}}}S_{n-1}^{4}-2left({frac {n-1}{a}}S_{n-1}^{2}right)sigma ^{2}+sigma ^{4}right]&={frac {(n-1)^{2}}{a^{2}}}operatorname {E} left[S_{n-1}^{4}right]-2left({frac {n-1}{a}}right)operatorname {E} left[S_{n-1}^{2}right]sigma ^{2}+sigma ^{4}&={frac {(n-1)^{2}}{a^{2}}}operatorname {E} left[S_{n-1}^{4}right]-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}&&operatorname {E} left[S_{n-1}^{2}right]=sigma ^{2}&={frac {(n-1)^{2}}{a^{2}}}left({frac {gamma _{2}}{n}}+{frac {n+1}{n-1}}right)sigma ^{4}-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}&&operatorname {E} left[S_{n-1}^{4}right]=operatorname {MSE} (S_{n-1}^{2})+sigma ^{4}&={frac {n-1}{na^{2}}}left((n-1)gamma _{2}+n^{2}+nright)sigma ^{4}-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}end{aligned}}}

This is minimized when

a=frac{(n-1)gamma_2+n^2+n}{n} = n+1+frac{n-1}{n}gamma_2.

For a Gaussian distribution, where gamma_2=0, this means that the MSE is minimized when dividing the sum by a=n+1. The minimum excess kurtosis is gamma_2=-2,[a] which is achieved by a Bernoulli distribution with p = 1/2 (a coin flip), and the MSE is minimized for {displaystyle a=n-1+{tfrac {2}{n}}.} Hence regardless of the kurtosis, we get a «better» estimate (in the sense of having a lower MSE) by scaling down the unbiased estimator a little bit; this is a simple example of a shrinkage estimator: one «shrinks» the estimator towards zero (scales down the unbiased estimator).

Further, while the corrected sample variance is the best unbiased estimator (minimum mean squared error among unbiased estimators) of variance for Gaussian distributions, if the distribution is not Gaussian, then even among unbiased estimators, the best unbiased estimator of the variance may not be S^2_{n-1}.

Gaussian distribution[edit]

The following table gives several estimators of the true parameters of the population, μ and σ2, for the Gaussian case.[9]

True value Estimator Mean squared error
{displaystyle theta =mu } hat{theta} = the unbiased estimator of the population mean, overline{X}=frac{1}{n}sum_{i=1}^n(X_i) operatorname{MSE}(overline{X})=operatorname{E}((overline{X}-mu)^2)=left(frac{sigma}{sqrt{n}}right)^2
{displaystyle theta =sigma ^{2}} hat{theta} = the unbiased estimator of the population variance, S^2_{n-1} = frac{1}{n-1}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n-1})=operatorname{E}((S^2_{n-1}-sigma^2)^2)=frac{2}{n - 1}sigma^4
{displaystyle theta =sigma ^{2}} hat{theta} = the biased estimator of the population variance, S^2_{n} = frac{1}{n}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n})=operatorname{E}((S^2_{n}-sigma^2)^2)=frac{2n - 1}{n^2}sigma^4
{displaystyle theta =sigma ^{2}} hat{theta} = the biased estimator of the population variance, S^2_{n+1} = frac{1}{n+1}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n+1})=operatorname{E}((S^2_{n+1}-sigma^2)^2)=frac{2}{n + 1}sigma^4

Interpretation[edit]

An MSE of zero, meaning that the estimator hat{theta} predicts observations of the parameter theta with perfect accuracy, is ideal (but typically not possible).

Values of MSE may be used for comparative purposes. Two or more statistical models may be compared using their MSEs—as a measure of how well they explain a given set of observations: An unbiased estimator (estimated from a statistical model) with the smallest variance among all unbiased estimators is the best unbiased estimator or MVUE (Minimum-Variance Unbiased Estimator).

Both analysis of variance and linear regression techniques estimate the MSE as part of the analysis and use the estimated MSE to determine the statistical significance of the factors or predictors under study. The goal of experimental design is to construct experiments in such a way that when the observations are analyzed, the MSE is close to zero relative to the magnitude of at least one of the estimated treatment effects.

In one-way analysis of variance, MSE can be calculated by the division of the sum of squared errors and the degree of freedom. Also, the f-value is the ratio of the mean squared treatment and the MSE.

MSE is also used in several stepwise regression techniques as part of the determination as to how many predictors from a candidate set to include in a model for a given set of observations.

Applications[edit]

  • Minimizing MSE is a key criterion in selecting estimators: see minimum mean-square error. Among unbiased estimators, minimizing the MSE is equivalent to minimizing the variance, and the estimator that does this is the minimum variance unbiased estimator. However, a biased estimator may have lower MSE; see estimator bias.
  • In statistical modelling the MSE can represent the difference between the actual observations and the observation values predicted by the model. In this context, it is used to determine the extent to which the model fits the data as well as whether removing some explanatory variables is possible without significantly harming the model’s predictive ability.
  • In forecasting and prediction, the Brier score is a measure of forecast skill based on MSE.

Loss function[edit]

Squared error loss is one of the most widely used loss functions in statistics[citation needed], though its widespread use stems more from mathematical convenience than considerations of actual loss in applications. Carl Friedrich Gauss, who introduced the use of mean squared error, was aware of its arbitrariness and was in agreement with objections to it on these grounds.[3] The mathematical benefits of mean squared error are particularly evident in its use at analyzing the performance of linear regression, as it allows one to partition the variation in a dataset into variation explained by the model and variation explained by randomness.

Criticism[edit]

The use of mean squared error without question has been criticized by the decision theorist James Berger. Mean squared error is the negative of the expected value of one specific utility function, the quadratic utility function, which may not be the appropriate utility function to use under a given set of circumstances. There are, however, some scenarios where mean squared error can serve as a good approximation to a loss function occurring naturally in an application.[10]

Like variance, mean squared error has the disadvantage of heavily weighting outliers.[11] This is a result of the squaring of each term, which effectively weights large errors more heavily than small ones. This property, undesirable in many applications, has led researchers to use alternatives such as the mean absolute error, or those based on the median.

See also[edit]

  • Bias–variance tradeoff
  • Hodges’ estimator
  • James–Stein estimator
  • Mean percentage error
  • Mean square quantization error
  • Mean square weighted deviation
  • Mean squared displacement
  • Mean squared prediction error
  • Minimum mean square error
  • Minimum mean squared error estimator
  • Overfitting
  • Peak signal-to-noise ratio

Notes[edit]

  1. ^ This can be proved by Jensen’s inequality as follows. The fourth central moment is an upper bound for the square of variance, so that the least value for their ratio is one, therefore, the least value for the excess kurtosis is −2, achieved, for instance, by a Bernoulli with p=1/2.

References[edit]

  1. ^ a b «Mean Squared Error (MSE)». www.probabilitycourse.com. Retrieved 2020-09-12.
  2. ^ Bickel, Peter J.; Doksum, Kjell A. (2015). Mathematical Statistics: Basic Ideas and Selected Topics. Vol. I (Second ed.). p. 20. If we use quadratic loss, our risk function is called the mean squared error (MSE) …
  3. ^ a b Lehmann, E. L.; Casella, George (1998). Theory of Point Estimation (2nd ed.). New York: Springer. ISBN 978-0-387-98502-2. MR 1639875.
  4. ^ Gareth, James; Witten, Daniela; Hastie, Trevor; Tibshirani, Rob (2021). An Introduction to Statistical Learning: with Applications in R. Springer. ISBN 978-1071614174.
  5. ^ Wackerly, Dennis; Mendenhall, William; Scheaffer, Richard L. (2008). Mathematical Statistics with Applications (7 ed.). Belmont, CA, USA: Thomson Higher Education. ISBN 978-0-495-38508-0.
  6. ^ A modern introduction to probability and statistics : understanding why and how. Dekking, Michel, 1946-. London: Springer. 2005. ISBN 978-1-85233-896-1. OCLC 262680588.{{cite book}}: CS1 maint: others (link)
  7. ^ Steel, R.G.D, and Torrie, J. H., Principles and Procedures of Statistics with Special Reference to the Biological Sciences., McGraw Hill, 1960, page 288.
  8. ^ Mood, A.; Graybill, F.; Boes, D. (1974). Introduction to the Theory of Statistics (3rd ed.). McGraw-Hill. p. 229.
  9. ^ DeGroot, Morris H. (1980). Probability and Statistics (2nd ed.). Addison-Wesley.
  10. ^ Berger, James O. (1985). «2.4.2 Certain Standard Loss Functions». Statistical Decision Theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. p. 60. ISBN 978-0-387-96098-2. MR 0804611.
  11. ^ Bermejo, Sergio; Cabestany, Joan (2001). «Oriented principal component analysis for large margin classifiers». Neural Networks. 14 (10): 1447–1461. doi:10.1016/S0893-6080(01)00106-X. PMID 11771723.

In statistics, the mean squared error (MSE)[1] or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss.[2] The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate.[3] In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution).

The MSE is a measure of the quality of an estimator. As it is derived from the square of Euclidean distance, it is always a positive value that decreases as the error approaches zero.

The MSE is the second moment (about the origin) of the error, and thus incorporates both the variance of the estimator (how widely spread the estimates are from one data sample to another) and its bias (how far off the average estimated value is from the true value).[citation needed] For an unbiased estimator, the MSE is the variance of the estimator. Like the variance, MSE has the same units of measurement as the square of the quantity being estimated. In an analogy to standard deviation, taking the square root of MSE yields the root-mean-square error or root-mean-square deviation (RMSE or RMSD), which has the same units as the quantity being estimated; for an unbiased estimator, the RMSE is the square root of the variance, known as the standard error.

Definition and basic properties[edit]

The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled). The definition of an MSE differs according to whether one is describing a predictor or an estimator.

Predictor[edit]

If a vector of n predictions is generated from a sample of n data points on all variables, and Y is the vector of observed values of the variable being predicted, with hat{Y} being the predicted values (e.g. as from a least-squares fit), then the within-sample MSE of the predictor is computed as

{displaystyle operatorname {MSE} ={frac {1}{n}}sum _{i=1}^{n}left(Y_{i}-{hat {Y_{i}}}right)^{2}.}

In other words, the MSE is the mean {textstyle left({frac {1}{n}}sum _{i=1}^{n}right)} of the squares of the errors {textstyle left(Y_{i}-{hat {Y_{i}}}right)^{2}}. This is an easily computable quantity for a particular sample (and hence is sample-dependent).

In matrix notation,

{displaystyle operatorname {MSE} ={frac {1}{n}}sum _{i=1}^{n}(e_{i})^{2}={frac {1}{n}}mathbf {e} ^{mathsf {T}}mathbf {e} }

where e_{i} is {displaystyle (Y_{i}-{hat {Y_{i}}})} and {displaystyle mathbf {e} } is the {displaystyle ntimes 1} column vector.

The MSE can also be computed on q data points that were not used in estimating the model, either because they were held back for this purpose, or because these data have been newly obtained. Within this process, known as statistical learning, the MSE is often called the test MSE,[4] and is computed as

{displaystyle operatorname {MSE} ={frac {1}{q}}sum _{i=n+1}^{n+q}left(Y_{i}-{hat {Y_{i}}}right)^{2}.}

Estimator[edit]

The MSE of an estimator hat{theta} with respect to an unknown parameter theta is defined as[1]

{displaystyle operatorname {MSE} ({hat {theta }})=operatorname {E} _{theta }left[({hat {theta }}-theta )^{2}right].}

This definition depends on the unknown parameter, but the MSE is a priori a property of an estimator. The MSE could be a function of unknown parameters, in which case any estimator of the MSE based on estimates of these parameters would be a function of the data (and thus a random variable). If the estimator hat{theta} is derived as a sample statistic and is used to estimate some population parameter, then the expectation is with respect to the sampling distribution of the sample statistic.

The MSE can be written as the sum of the variance of the estimator and the squared bias of the estimator, providing a useful way to calculate the MSE and implying that in the case of unbiased estimators, the MSE and variance are equivalent.[5]

{displaystyle operatorname {MSE} ({hat {theta }})=operatorname {Var} _{theta }({hat {theta }})+operatorname {Bias} ({hat {theta }},theta )^{2}.}

Proof of variance and bias relationship[edit]

{displaystyle {begin{aligned}operatorname {MSE} ({hat {theta }})&=operatorname {E} _{theta }left[({hat {theta }}-theta )^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]+operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}+2left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)left(operatorname {E} _{theta }[{hat {theta }}]-theta right)+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+operatorname {E} _{theta }left[2left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)left(operatorname {E} _{theta }[{hat {theta }}]-theta right)right]+operatorname {E} _{theta }left[left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+2left(operatorname {E} _{theta }[{hat {theta }}]-theta right)operatorname {E} _{theta }left[{hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right]+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&&operatorname {E} _{theta }[{hat {theta }}]-theta ={text{const.}}&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+2left(operatorname {E} _{theta }[{hat {theta }}]-theta right)left(operatorname {E} _{theta }[{hat {theta }}]-operatorname {E} _{theta }[{hat {theta }}]right)+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&&operatorname {E} _{theta }[{hat {theta }}]={text{const.}}&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&=operatorname {Var} _{theta }({hat {theta }})+operatorname {Bias} _{theta }({hat {theta }},theta )^{2}end{aligned}}}

An even shorter proof can be achieved using the well-known formula that for a random variable {textstyle X}, {textstyle mathbb {E} (X^{2})=operatorname {Var} (X)+(mathbb {E} (X))^{2}}. By substituting {textstyle X} with, {textstyle {hat {theta }}-theta }, we have

{displaystyle {begin{aligned}operatorname {MSE} ({hat {theta }})&=mathbb {E} [({hat {theta }}-theta )^{2}]&=operatorname {Var} ({hat {theta }}-theta )+(mathbb {E} [{hat {theta }}-theta ])^{2}&=operatorname {Var} ({hat {theta }})+operatorname {Bias} ^{2}({hat {theta }})end{aligned}}}

But in real modeling case, MSE could be described as the addition of model variance, model bias, and irreducible uncertainty (see Bias–variance tradeoff). According to the relationship, the MSE of the estimators could be simply used for the efficiency comparison, which includes the information of estimator variance and bias. This is called MSE criterion.

In regression[edit]

In regression analysis, plotting is a more natural way to view the overall trend of the whole data. The mean of the distance from each point to the predicted regression model can be calculated, and shown as the mean squared error. The squaring is critical to reduce the complexity with negative signs. To minimize MSE, the model could be more accurate, which would mean the model is closer to actual data. One example of a linear regression using this method is the least squares method—which evaluates appropriateness of linear regression model to model bivariate dataset,[6] but whose limitation is related to known distribution of the data.

The term mean squared error is sometimes used to refer to the unbiased estimate of error variance: the residual sum of squares divided by the number of degrees of freedom. This definition for a known, computed quantity differs from the above definition for the computed MSE of a predictor, in that a different denominator is used. The denominator is the sample size reduced by the number of model parameters estimated from the same data, (np) for p regressors or (np−1) if an intercept is used (see errors and residuals in statistics for more details).[7] Although the MSE (as defined in this article) is not an unbiased estimator of the error variance, it is consistent, given the consistency of the predictor.

In regression analysis, «mean squared error», often referred to as mean squared prediction error or «out-of-sample mean squared error», can also refer to the mean value of the squared deviations of the predictions from the true values, over an out-of-sample test space, generated by a model estimated over a particular sample space. This also is a known, computed quantity, and it varies by sample and by out-of-sample test space.

Examples[edit]

Mean[edit]

Suppose we have a random sample of size n from a population, X_{1},dots ,X_{n}. Suppose the sample units were chosen with replacement. That is, the n units are selected one at a time, and previously selected units are still eligible for selection for all n draws. The usual estimator for the mu is the sample average

overline{X}=frac{1}{n}sum_{i=1}^n X_i

which has an expected value equal to the true mean mu (so it is unbiased) and a mean squared error of

{displaystyle operatorname {MSE} left({overline {X}}right)=operatorname {E} left[left({overline {X}}-mu right)^{2}right]=left({frac {sigma }{sqrt {n}}}right)^{2}={frac {sigma ^{2}}{n}}}

where sigma ^{2} is the population variance.

For a Gaussian distribution, this is the best unbiased estimator (i.e., one with the lowest MSE among all unbiased estimators), but not, say, for a uniform distribution.

Variance[edit]

The usual estimator for the variance is the corrected sample variance:

{displaystyle S_{n-1}^{2}={frac {1}{n-1}}sum _{i=1}^{n}left(X_{i}-{overline {X}}right)^{2}={frac {1}{n-1}}left(sum _{i=1}^{n}X_{i}^{2}-n{overline {X}}^{2}right).}

This is unbiased (its expected value is sigma ^{2}), hence also called the unbiased sample variance, and its MSE is[8]

{displaystyle operatorname {MSE} (S_{n-1}^{2})={frac {1}{n}}left(mu _{4}-{frac {n-3}{n-1}}sigma ^{4}right)={frac {1}{n}}left(gamma _{2}+{frac {2n}{n-1}}right)sigma ^{4},}

where mu _{4} is the fourth central moment of the distribution or population, and gamma_2=mu_4/sigma^4-3 is the excess kurtosis.

However, one can use other estimators for sigma ^{2} which are proportional to S^2_{n-1}, and an appropriate choice can always give a lower mean squared error. If we define

{displaystyle S_{a}^{2}={frac {n-1}{a}}S_{n-1}^{2}={frac {1}{a}}sum _{i=1}^{n}left(X_{i}-{overline {X}},right)^{2}}

then we calculate:

{displaystyle {begin{aligned}operatorname {MSE} (S_{a}^{2})&=operatorname {E} left[left({frac {n-1}{a}}S_{n-1}^{2}-sigma ^{2}right)^{2}right]&=operatorname {E} left[{frac {(n-1)^{2}}{a^{2}}}S_{n-1}^{4}-2left({frac {n-1}{a}}S_{n-1}^{2}right)sigma ^{2}+sigma ^{4}right]&={frac {(n-1)^{2}}{a^{2}}}operatorname {E} left[S_{n-1}^{4}right]-2left({frac {n-1}{a}}right)operatorname {E} left[S_{n-1}^{2}right]sigma ^{2}+sigma ^{4}&={frac {(n-1)^{2}}{a^{2}}}operatorname {E} left[S_{n-1}^{4}right]-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}&&operatorname {E} left[S_{n-1}^{2}right]=sigma ^{2}&={frac {(n-1)^{2}}{a^{2}}}left({frac {gamma _{2}}{n}}+{frac {n+1}{n-1}}right)sigma ^{4}-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}&&operatorname {E} left[S_{n-1}^{4}right]=operatorname {MSE} (S_{n-1}^{2})+sigma ^{4}&={frac {n-1}{na^{2}}}left((n-1)gamma _{2}+n^{2}+nright)sigma ^{4}-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}end{aligned}}}

This is minimized when

a=frac{(n-1)gamma_2+n^2+n}{n} = n+1+frac{n-1}{n}gamma_2.

For a Gaussian distribution, where gamma_2=0, this means that the MSE is minimized when dividing the sum by a=n+1. The minimum excess kurtosis is gamma_2=-2,[a] which is achieved by a Bernoulli distribution with p = 1/2 (a coin flip), and the MSE is minimized for {displaystyle a=n-1+{tfrac {2}{n}}.} Hence regardless of the kurtosis, we get a «better» estimate (in the sense of having a lower MSE) by scaling down the unbiased estimator a little bit; this is a simple example of a shrinkage estimator: one «shrinks» the estimator towards zero (scales down the unbiased estimator).

Further, while the corrected sample variance is the best unbiased estimator (minimum mean squared error among unbiased estimators) of variance for Gaussian distributions, if the distribution is not Gaussian, then even among unbiased estimators, the best unbiased estimator of the variance may not be S^2_{n-1}.

Gaussian distribution[edit]

The following table gives several estimators of the true parameters of the population, μ and σ2, for the Gaussian case.[9]

True value Estimator Mean squared error
{displaystyle theta =mu } hat{theta} = the unbiased estimator of the population mean, overline{X}=frac{1}{n}sum_{i=1}^n(X_i) operatorname{MSE}(overline{X})=operatorname{E}((overline{X}-mu)^2)=left(frac{sigma}{sqrt{n}}right)^2
{displaystyle theta =sigma ^{2}} hat{theta} = the unbiased estimator of the population variance, S^2_{n-1} = frac{1}{n-1}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n-1})=operatorname{E}((S^2_{n-1}-sigma^2)^2)=frac{2}{n - 1}sigma^4
{displaystyle theta =sigma ^{2}} hat{theta} = the biased estimator of the population variance, S^2_{n} = frac{1}{n}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n})=operatorname{E}((S^2_{n}-sigma^2)^2)=frac{2n - 1}{n^2}sigma^4
{displaystyle theta =sigma ^{2}} hat{theta} = the biased estimator of the population variance, S^2_{n+1} = frac{1}{n+1}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n+1})=operatorname{E}((S^2_{n+1}-sigma^2)^2)=frac{2}{n + 1}sigma^4

Interpretation[edit]

An MSE of zero, meaning that the estimator hat{theta} predicts observations of the parameter theta with perfect accuracy, is ideal (but typically not possible).

Values of MSE may be used for comparative purposes. Two or more statistical models may be compared using their MSEs—as a measure of how well they explain a given set of observations: An unbiased estimator (estimated from a statistical model) with the smallest variance among all unbiased estimators is the best unbiased estimator or MVUE (Minimum-Variance Unbiased Estimator).

Both analysis of variance and linear regression techniques estimate the MSE as part of the analysis and use the estimated MSE to determine the statistical significance of the factors or predictors under study. The goal of experimental design is to construct experiments in such a way that when the observations are analyzed, the MSE is close to zero relative to the magnitude of at least one of the estimated treatment effects.

In one-way analysis of variance, MSE can be calculated by the division of the sum of squared errors and the degree of freedom. Also, the f-value is the ratio of the mean squared treatment and the MSE.

MSE is also used in several stepwise regression techniques as part of the determination as to how many predictors from a candidate set to include in a model for a given set of observations.

Applications[edit]

  • Minimizing MSE is a key criterion in selecting estimators: see minimum mean-square error. Among unbiased estimators, minimizing the MSE is equivalent to minimizing the variance, and the estimator that does this is the minimum variance unbiased estimator. However, a biased estimator may have lower MSE; see estimator bias.
  • In statistical modelling the MSE can represent the difference between the actual observations and the observation values predicted by the model. In this context, it is used to determine the extent to which the model fits the data as well as whether removing some explanatory variables is possible without significantly harming the model’s predictive ability.
  • In forecasting and prediction, the Brier score is a measure of forecast skill based on MSE.

Loss function[edit]

Squared error loss is one of the most widely used loss functions in statistics[citation needed], though its widespread use stems more from mathematical convenience than considerations of actual loss in applications. Carl Friedrich Gauss, who introduced the use of mean squared error, was aware of its arbitrariness and was in agreement with objections to it on these grounds.[3] The mathematical benefits of mean squared error are particularly evident in its use at analyzing the performance of linear regression, as it allows one to partition the variation in a dataset into variation explained by the model and variation explained by randomness.

Criticism[edit]

The use of mean squared error without question has been criticized by the decision theorist James Berger. Mean squared error is the negative of the expected value of one specific utility function, the quadratic utility function, which may not be the appropriate utility function to use under a given set of circumstances. There are, however, some scenarios where mean squared error can serve as a good approximation to a loss function occurring naturally in an application.[10]

Like variance, mean squared error has the disadvantage of heavily weighting outliers.[11] This is a result of the squaring of each term, which effectively weights large errors more heavily than small ones. This property, undesirable in many applications, has led researchers to use alternatives such as the mean absolute error, or those based on the median.

See also[edit]

  • Bias–variance tradeoff
  • Hodges’ estimator
  • James–Stein estimator
  • Mean percentage error
  • Mean square quantization error
  • Mean square weighted deviation
  • Mean squared displacement
  • Mean squared prediction error
  • Minimum mean square error
  • Minimum mean squared error estimator
  • Overfitting
  • Peak signal-to-noise ratio

Notes[edit]

  1. ^ This can be proved by Jensen’s inequality as follows. The fourth central moment is an upper bound for the square of variance, so that the least value for their ratio is one, therefore, the least value for the excess kurtosis is −2, achieved, for instance, by a Bernoulli with p=1/2.

References[edit]

  1. ^ a b «Mean Squared Error (MSE)». www.probabilitycourse.com. Retrieved 2020-09-12.
  2. ^ Bickel, Peter J.; Doksum, Kjell A. (2015). Mathematical Statistics: Basic Ideas and Selected Topics. Vol. I (Second ed.). p. 20. If we use quadratic loss, our risk function is called the mean squared error (MSE) …
  3. ^ a b Lehmann, E. L.; Casella, George (1998). Theory of Point Estimation (2nd ed.). New York: Springer. ISBN 978-0-387-98502-2. MR 1639875.
  4. ^ Gareth, James; Witten, Daniela; Hastie, Trevor; Tibshirani, Rob (2021). An Introduction to Statistical Learning: with Applications in R. Springer. ISBN 978-1071614174.
  5. ^ Wackerly, Dennis; Mendenhall, William; Scheaffer, Richard L. (2008). Mathematical Statistics with Applications (7 ed.). Belmont, CA, USA: Thomson Higher Education. ISBN 978-0-495-38508-0.
  6. ^ A modern introduction to probability and statistics : understanding why and how. Dekking, Michel, 1946-. London: Springer. 2005. ISBN 978-1-85233-896-1. OCLC 262680588.{{cite book}}: CS1 maint: others (link)
  7. ^ Steel, R.G.D, and Torrie, J. H., Principles and Procedures of Statistics with Special Reference to the Biological Sciences., McGraw Hill, 1960, page 288.
  8. ^ Mood, A.; Graybill, F.; Boes, D. (1974). Introduction to the Theory of Statistics (3rd ed.). McGraw-Hill. p. 229.
  9. ^ DeGroot, Morris H. (1980). Probability and Statistics (2nd ed.). Addison-Wesley.
  10. ^ Berger, James O. (1985). «2.4.2 Certain Standard Loss Functions». Statistical Decision Theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. p. 60. ISBN 978-0-387-96098-2. MR 0804611.
  11. ^ Bermejo, Sergio; Cabestany, Joan (2001). «Oriented principal component analysis for large margin classifiers». Neural Networks. 14 (10): 1447–1461. doi:10.1016/S0893-6080(01)00106-X. PMID 11771723.

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

  • 1 Введение
    • 1.1 Постановка вопроса. Виды погрешностей
  • 2 Виды мер точности
  • 3 Предельные погрешности
  • 4 Погрешности округлений при представлении чисел в компьютере
  • 5 Погрешности арифметических операций
  • 6 Погрешности вычисления функций
  • 7 Числовые примеры
  • 8 Список литературы
  • 9 См. также

Введение

Постановка вопроса. Виды погрешностей

Процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, так как на каждом этапе вносятся погрешности. Построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются неустранимыми, поскольку они неизбежны в рамках данной модели.

При переходе от математической модели к численному методу возникают погрешности, называемые погрешностями метода. Они связаны с тем, что всякий численный метод воспроизводит исходную математическую модель приближенно. Наиболее типичными погрешностями метода являются погрешность дискретизации и погрешность округления.
При построении численного метода в качестве аналога исходной математической задачи обычно рассматривается её дискретная модель. Разность решений дискретизированной задачи и исходной называется погрешностью дискретизации. Обычно дискретная модель зависит от некоторого параметра (или их множества) дискретизации, при стремлении которого к нулю должна стремиться к нулю и погрешность дискретизации.
Дискретная модель представляет собой систему большого числа алгебраических уравнений. Для её решения используется тот или иной численный алгоритм. Входные данные этой системы, а именно коэффициенты и правые части, задаются в ЭВМ не точно, а с округлением. В процессе работы алгоритма погрешности округления обычно накапливаются, и в результате, решение, полученное на ЭВМ, будет отличаться от точного решения дискретизированной задачи. Результирующая погрешность называется погрешностью округления (вычислительной погрешностью). Величина этой погрешности определяется двумя факторами: точностью представления вещественных чисел в ЭВМ и чувствительностью данного алгоритма к погрешностям округления.

Итак, следует различать погрешности модели, дискретизации и округления. В вопросе преобладания какой-либо погрешности ответ неоднозначен. В общем случае нужно стремиться, чтобы все погрешности имели один и тот же порядок. Например, нецелесообразно пользоваться разностными схемами, имеющими точность 10−6, если коэффициенты исходных уравнений задаются с точностью 10−2.

Виды мер точности

Мерой точности вычислений являются абсолютные и относительные погрешности. Абсолютная погрешность определяется формулой

Delta(tilde a)=|tilde a-a|,

где tilde a – приближение к точному значению a.
Относительная погрешность определяется формулой

delta(tilde a)=frac{|tilde a-a|}{a}.

Относительная погрешность часто выражается в процентах. Абсолютная и относительная погрешности тесно связаны с понятием верных значащих цифр. Значащими цифрами числа называют все цифры в его записи, начиная с первой ненулевой цифры слева. Например, число 0,000129 имеет три значащих цифры. Значащая цифра называется верной, если абсолютная погрешность числа не превышает половины веса разряда, соответствующего этой цифре. Например, tilde a=9348, абсолютная погрешность Delta(tilde a)=15. Записывая число в виде

9348=9cdot10^3+3cdot10^2+4cdot10^1+8cdot10^0,

имеем 0,5cdot10^1<Delta(tilde a)<0,5cdot10^2, следовательно, число имеет две верных значащих цифр (9 и 3).

В общем случае абсолютная погрешность должна удовлетворять следующему неравенству:

Delta(tilde a)<0,5cdot10^{m-n+1} ,

где m — порядок (вес) старшей цифры, n — количество верных значащих цифр.
В рассматриваемом примере Delta(tilde a)le0,5cdot10^{3-2+1}le0,5cdot10^2=50.

Относительная погрешность связана с количеством верных цифр приближенного числа соотношением:

delta(tilde a)lefrac{Delta(tilde a)}{alpha_m}10^mlefrac{10^{m-n+1}}{alpha_m10^m}lefrac{1}{alpha_m10^{n-1}},

где alpha_m — старшая значащая цифра числа.

Для двоичного представления чисел имеем delta(tilde a)le2^{-n}.

Тот факт, что число tilde a является приближенным значением числа a с абсолютной погрешностью Delta(tilde a), записывают в виде

a=tilde apmDelta(tilde a),

причем числа tilde a и Delta(tilde a) записываются с одинаковым количеством знаков после запятой, например, a=2,347pm0,002 или a=2,347pm2cdot10^{-3}.

Запись вида

a=tilde a(1pmdelta(tilde a))

означает, что число tilde a является приближенным значение числа a с относительной погрешностью delta(tilde a).

Так как точное решение задачи как правило неизвестно, то погрешности приходится оценивать через исходные данные и особенности алгоритма. Если оценка может быть вычислена до решения задачи, то она называется априорной. Если оценка вычисляется после получения приближенного решения задачи, то она называется апостериорной.

Очень часто степень точности решения задачи характеризуется некоторыми косвенными вспомогательными величинами. Например точность решения системы алгебраических уравнений

AX=F

характеризуется невязкой

R=F-Atilde X,

где tilde X — приближенное решение системы.
Причём невязка достаточно сложным образом связана с погрешностью решения Delta(X)=tilde X-X, причём если невязка мала, то погрешность может быть значительной.

Предельные погрешности

Пусть искомая величина a является функцией параметров t_1, ldots , t_n in Omega, qquad a* — приближенное значение a. Тогда предельной абсолютной погрешностью называется величина

D(a^*) = suplimits_{(t_1, ldots ,t_n) in Omega } left|{a(t_1, ldots ,t_n) - a^*}right| ,

Предельной относительной погрешностью называется величина D(a*)/| a*|.

Пусть left|{t_j - t_j^*}right| le Delta (t_j^* ), qquad j = 1 div n — приближенное значение a^* = a(t_1^*, ldots ,t_n^* ). Предполагаем, что a — непрерывно дифференцируемая функция своих аргументов. Тогда, по формуле Лагранжа,

a(t_1, ldots ,t_n) - a^* = sumlimits_{j = 1}^n gamma_j (alpha )(t_j - t_j^*),

где gamma_j (alpha ) = a^{prime}_{t_j}(t_1^* + alpha (t_1 - t_1^*), ldots ,t_n^* + alpha (t_n - t_n^*)), qquad 0 le alpha le 1.

Отсюда

left|{a(t_1, ldots ,t_n) - a^*}right| le D_1 (a^*) = sumlimits_{j = 1}^n b_j Delta (t_j^*),

где b_j = suplimits_Omega left|{a^{prime}_{t_j}(t_1, ldots ,t_n)}right|.

Можно показать, что при малых rho = sqrt{{(Delta (t_1^* ))}^2 + ldots + {(Delta (t_n^* ))}^2 } эта оценка не может быть существенно улучшена. На практике иногда пользуются грубой (линейной) оценкой

left|{a(t_1, ldots ,t_n) - a^*}right| le D_2 (a^*),

где D_2 (a^*) = sumlimits_{j = 1} left|{gamma_j (0)}right| Delta (t^*).

Несложно показать, что:

  1. Delta ( pm t_1^* pm , ldots , pm t_n^*) = Delta (t_1^* ) + ldots + Delta (t_n^* ) — предельная погрешность суммы или разности равна сумме предельных погрешностей.
  2. delta (t_1^* cdots t_m^* cdot d_1^{* - 1} cdots d_m^{* - 1} ) = delta (t_1^* ) + ldots + delta (t_m^*) + delta (d_1^*) + ldots + delta (d_n^*) — предельная относительная погрешность произведения или частного приближенного равна сумме предельных относительных погрешностей.

Погрешности округлений при представлении чисел в компьютере

Одним из основных источников вычислительных погрешностей является приближенное представление чисел в компьютере, обусловленное конечностью разрядной сетки (см. Международный стандарт представления чисел с плавающей точкой в ЭВМ). Число a, не представимое в компьютере, подвергается округлению, т. е. заменяется близким числом tilde a, представимым в компьютере точно.
Найдем границу относительной погрешности представления числа с плавающей точкой. Допустим, что применяется простейшее округление – отбрасывание всех разрядов числа, выходящих за пределы разрядной сетки. Система счисления – двоичная. Пусть надо записать число, представляющее бесконечную двоичную дробь

a=underbrace{pm2^p}_{order}underbrace{left(frac{a_1}{2}+frac{a_2}{2^2}+dots+frac{a_t}{2^t}+frac{a_{t+1}}{2^{t+1}}+dotsright)}_{mantissa},

где a_j={01, qquad (j=1,2,...) — цифры мантиссы.
Пусть под запись мантиссы отводится t двоичных разрядов. Отбрасывая лишние разряды, получим округлённое число

tilde a=pm2^pleft(frac{a_1}{2}+frac{a_2}{2^2}+dots+frac{a_t}{2^t}right).

Абсолютная погрешность округления в этом случае равна

a-tilde a=pm2^pleft(frac{a_{t+1}}{2^{t+1}}+frac{a_{t+2}}{2^{t+2}}+dotsright).

Наибольшая погрешность будет в случае a_{t+1}=1, qquad a_{t+2}=1,, тогда

|a-tilde a|lepm2^pfrac{1}{2^{t+1}}underbrace{left(1+frac{1}{2}+frac{1}{2^2}+dotsright)}_{=2}=2^{p-t}.

Т.к. |M|ge0,5, где M — мантисса числа a, то всегда a_1=1. Тогда |a|ge2^pcdot2^{-1}=2^{p-1} и относительная погрешность равна frac{|a-tilde a|}{|a|}le2^{-t+1}. Практически применяют более точные методы округления и погрешность представления чисел равна

( 1 )

frac{|a-tilde a|}{|a|}le2^{-t},

т.е. точность представления чисел определяется разрядностью мантиссы t.
Тогда приближенно представленное в компьютере число можно записать в виде tilde a=a(1pmepsilon), где |epsilon|le2^{-t}«машинный эпсилон» – относительная погрешность представления чисел.

Погрешности арифметических операций

При вычислениях с плавающей точкой операция округления может потребоваться после выполнения любой из арифметических операций. Так умножение или деление двух чисел сводится к умножению или делению мантисс. Так как в общем случае количество разрядов мантисс произведений и частных больше допустимой разрядности мантиссы, то требуется округление мантиссы результатов. При сложении или вычитании чисел с плавающей точкой операнды должны быть предварительно приведены к одному порядку, что осуществляется сдвигом вправо мантиссы числа, имеющего меньший порядок, и увеличением в соответствующее число раз порядка этого числа. Сдвиг мантиссы вправо может привести к потере младших разрядов мантиссы, т.е. появляется погрешность округления.

Округленное в системе с плавающей точкой число, соответствующее точному числу x, обозначается через fl(x) (от англ. floating – плавающий). Выполнение каждой арифметической операции вносит относительную погрешность, не большую, чем погрешность представления чисел с плавающей точкой (1). Верна следующая запись:

fl(abox b)=abox b(1pmepsilon),

где box — любая из арифметических операций, |epsilon|le2^{-t}.

Рассмотрим трансформированные погрешности арифметических операций. Арифметические операции проводятся над приближенными числами, ошибка арифметических операций не учитывается (эту ошибку легко учесть, прибавив ошибку округления соответствующей операции к вычисленной ошибке).

Рассмотрим сложение и вычитание приближенных чисел. Абсолютная погрешность алгебраической суммы нескольких приближенных чисел равна сумме абсолютных погрешностей слагаемых.

Если сумма точных чисел равна

S=a_1+a_2+dots+a_n,

сумма приближенных чисел равна

tilde S=a_1+Delta(a_1)+a_2+Delta(a_2)+dots+a_n+Delta(a_n),

где Delta(a_i), qquad i=1,2,...,n— абсолютные погрешности представления чисел.

Тогда абсолютная погрешность суммы равна

Delta(S)=Delta(a_1)+Delta(a_2)+dots+Delta(a_n).

Относительная погрешность суммы нескольких чисел равна

( 2 )

delta(S)=frac{Delta(S)}{S}=frac{a_1}{S}left(frac{Delta(a_1)}{a_1}right)+frac{a_2}{S}left(frac{Delta(a_2)}{a_2}right)+dots=frac{a_1delta(a_1)+a_2delta(a_2)+dots}{S},

где delta(a_i), qquad i=1,2,...,n — относительные погрешности представления чисел.

Из (2) следует, что относительная погрешность суммы нескольких чисел одного и того же знака заключена между наименьшей и наибольшей из относительных погрешностей слагаемых:

min quad delta(a_k)ledelta(S)le max quad delta(a_k), qquad k=1,2,...,n, quad a_k>0.

При сложении чисел разного знака или вычитании чисел одного знака относительная погрешность может быть очень большой (если числа близки между собой). Так как даже при малых Delta(a_i) величина S может быть очень малой. Поэтому вычислительные алгоритмы необходимо строить таким образом, чтобы избегать вычитания близких чисел.

Необходимо отметить, что погрешности вычислений зависят от порядка вычислений. Далее будет рассмотрен пример сложения трех чисел.

S=x_1+x_2+x_3,
tilde S_1=(x_1+x_2)(1+delta_1),

( 3 )

tilde S=(tilde S_1+x_3)(1+delta_2)=(x_1+x_2)(1+delta_1)(1+delta_2)+x_3(1+delta_2).

При другой последовательности действий погрешность будет другой:

tilde S_1=(x_3+x_2)(1+delta_1),
tilde S=(x_3+x_2)(1+delta_1)(1+delta_2)+x_1(1+delta_2).

Из (3) видно, что результат выполнения некоторого алгоритма, искаженный погрешностями округлений, совпадает с результатом выполнения того же алгоритма, но с неточными исходными данными. Т.е. можно применять обратный анализ: свести влияние погрешностей округления к возмущению исходных данных. Тогда вместо (3) будет следующая запись:

tilde S=tilde x_1+tilde x_2+tilde x_3,

где tilde x_1=x_1(1+delta_1)(1+delta_2), quad tilde x_2=x_2(1+delta_1)(1+delta_2), quad tilde x_3=x_3(1+delta_2).

При умножении и делении приближенных чисел складываются и вычитаются их относительные погрешности.

S=a_1cdot a_2,
tilde S=a_1cdot a_2(1+delta(a_1))(1+delta(a_2))a_1cdot a_2(1+delta(a_1)+delta(a_2)),

с точностью величин второго порядка малости относительно delta.

Тогда delta(S)=delta(a_1)+delta(a_2).

Если S=frac{a_1}{a_2}, то Delta(S)=frac{a_1(1+delta_1)}{a_2(1+delta_2)}-frac{a_1}{a_2}=frac{a_1(delta_1-delta_2)}{a_2(1+delta_2)}approx frac{a_1}{a_2}(delta_1-delta_2), qquad delta(S)delta_1-delta_2.

При большом числе n арифметических операций можно пользоваться приближенной статистической оценкой погрешности арифметических операций, учитывающей частичную компенсацию погрешностей разных знаков:

delta_Sigma approx delta_{fl} quad sqrt{n},

где delta_Sigma – суммарная погрешность, |delta_{fl}|leepsilon – погрешность выполнения операций с плавающей точкой, epsilon – погрешность представления чисел с плавающей точкой.

Погрешности вычисления функций

Рассмотрим трансформированную погрешность вычисления значений функций.

Абсолютная трансформированная погрешность дифференцируемой функции y=f(x), вызываемая достаточно малой погрешностью аргумента Delta(x), оценивается величиной Delta(y)=|f'(x)|Delta(x).

Если f(x)>0, то delta(y)=frac{|f'(x)|}{f(x)}Delta(x)=left|(ln(f(x)))'right|cdotDelta(x).

Абсолютная погрешность дифференцируемой функции многих аргументов y=f(x_1, x_2, ..., x_n), вызываемая достаточно малыми погрешностями Delta(x_1), Delta(x_2), ..., Delta(x_n) аргументов x_1, x_2, ...,x_n оценивается величиной:

Delta(y)=sumlimits_{i=1}^nleft|frac{partial f}{partial x_i}right|Delta(x_i).

Если f(x_1,x_2,...,x_n)>0, то delta(y)=sumlimits_{i=1}^nfrac{1}{f}cdotleft|frac{partial f}{partial x_i}right|cdotDelta(x_i)=sumlimits_{i=1}^{n}left|frac{partial l_n(f)}{partial x_i}right|Delta(x_i).

Практически важно определить допустимую погрешность аргументов и допустимую погрешность функции (обратная задача). Эта задача имеет однозначное решение только для функций одной переменной y=f(x), если f(x) дифференцируема и f'(x)not=0:

Delta(x)=frac{1}{|f'(x)|}Delta(y).

Для функций многих переменных задача не имеет однозначного решения, необходимо ввести дополнительные ограничения. Например, если функция y=f(x_1,x_2,...,x_n) наиболее критична к погрешности Delta(x_i), то:

Delta(x_i)=frac{Delta(y)}{left|frac{partial f}{partial x_i}right|}qquad (погрешностью других аргументов пренебрегаем).

Если вклад погрешностей всех аргументов примерно одинаков, то применяют принцип равных влияний:

Delta(x_i)=frac{Delta(y)}{nleft|frac{partial f}{partial x_i}right|},qquad i=overline{1,n}.

Числовые примеры

Специфику машинных вычислений можно пояснить на нескольких элементарных примерах.

ПРИМЕР 1. Вычислить все корни уравнения

x^4 - 4x^3 + 8x^2 - 16x + 15.underbrace{99999999}_8 = {(x - 2)}^4 - 10^{- 8} = 0.

Точное решение задачи легко найти:

(x - 2)^2 = pm 10^{- 4},
x_1= 2,01; x_2= 1,99; x_{3,4}= 2 pm 0,01i.

Если компьютер работает при delta _M > 10^{ - 8}, то свободный член в исходном уравнении будет округлен до 16,0 и, с точки зрения представления чисел с плавающей точкой, будет решаться уравнение (x-2)^4= 0, т.е. x_{1,2,3,4} = 2, что, очевидно, неверно. В данном случае малые погрешности в задании свободного члена approx10^{-8} привели, независимо от метода решения, к погрешности в решении approx10^{-2}.

ПРИМЕР 2. Решается задача Коши для обыкновенного дифференциального уравнения 2-го порядка:

u''(t) = u(t), qquad u(0) = 1, qquad u'(0) = - 1.

Общее решение имеет вид:

u(t) = 0,5[u(0) + u'(0)]e^t + 0,5[u(0) - u'(0)]e^{- t}.

При заданных начальных данных точное решение задачи: u(x) = e^{-t}, однако малая погрешность delta в их задании приведет к появлению члена delta e^t, который при больших значениях аргумента может существенно исказить решение.

ПРИМЕР 3. Пусть необходимо найти решение обыкновенного дифференциального уравнения:

stackrel{cdot}{u} = 10u,qquad u = u(t), u(t_0) = u_0,qquad t in [0,1].

Его решение: u(t) = u_0e^{10(t - t_0 )}, однако значение u(t_0) известно лишь приближенно: u(t_0) approx u_0^*, и на самом деле u^*(t) = u_0^*e^{10(t - t_0)}.

Соответственно, разность u* - u будет:

u^* - u = (u_0^* - u_0)e^{10(t - t_0)}.

Предположим, что необходимо гарантировать некоторую заданную точность вычислений epsilon > 0 всюду на отрезке t in [0,1]. Тогда должно выполняться условие:

|{u^*(t) - u(t)}| le varepsilon.

Очевидно, что:

maxlimits_{t in [0,1]} |{u^*(t) - u(t)}| = |{u*(1) - u(1)}| = |{u_0^* - u_0}|e^{10(1 - t_0)}.

Отсюда можно получить требования к точности задания начальных данных delta: qquad|u_0^* - u_0| < delta, qquad delta le varepsilon e^{ - 10} при t_0= 0.

Таким образом, требование к заданию точности начальных данных оказываются в e^{10} раз выше необходимой точности результата решения задачи. Это требование, скорее всего, окажется нереальным.

Решение оказывается очень чувствительным к заданию начальных данных. Такого рода задачи называются плохо обусловленными.

ПРИМЕР 4. Решением системы линейных алгебраических уравнений (СЛАУ):

left{ begin{array}{l} u + 10v = 11,  100u + 1001v = 1101;  end{array} right.

является пара чисел {1, quad 1}.

Изменив правую часть системы на 0,01, получим возмущенную систему:

left{ begin{array}{l} u + 10v = 11.01,  100u + 1001v = 1101;  end{array} right.

с решением {11.01, quad 0.00}, сильно отличающимся от решения невозмущенной системы. Эта система также плохо обусловлена.

ПРИМЕР 5. Рассмотрим методический пример вычислений на модельном компьютере, обеспечивающем точность delta_M = 0,0005. Проанализируем причину происхождения ошибки, например, при вычитании двух чисел, взятых с точностью до третьей цифры после десятичной точки u = 1,001,quad v = 1,002, разность которых составляет Delta = |v_M - u_M| = 0,001.

В памяти машины эти же числа представляются в виде:

u_M = u(1 + delta_M^u), quad v_M = v(1 + delta_M^v), причем mid delta_M^umid le delta_M и mid delta_M^vmid le delta_M.

Тогда:

u_M - u approx udelta_M^u, quad v_M - v approx vdelta_M^v.

Относительная ошибка при вычислении разности u_M - v_M будет равна:

delta = frac{(u_M - v_M) - (u - v)}{(u - v)} = frac{(u_M - u) - (v_M - v)}{(u - v)} = frac{delta_M^u - delta_M^v}{(u - v)}.

Очевидно, что delta = left|{frac{delta_M^u - delta_M^v}{Delta }} right| le frac{2delta_M}{0,001} approx 2000delta_M = 1, т.е. все значащие цифры могут оказаться неверными.

ПРИМЕР 6. Рассмотрим рекуррентное соотношение u_{i+1} = qu_i, quad i ge 0, quad u_0 = a,quad q > 0, quad u_i > 0.

Пусть при выполнении реальных вычислений с конечной длиной мантиссы на i-м шаге возникла погрешность округления, и вычисления проводятся с возмущенным значением u_i^M = u_i + delta_i, тогда вместо u_{i+1} получим u_{i + 1}^M = q(u_i + delta_i) = u_{i + 1} + qdelta_i, т.е. delta_{i + 1} = qdelta_i,quad i = 0,1,ldots .

Следовательно, если |q| > 1, то в процессе вычислений погрешность, связанная с возникшей ошибкой округления, будет возрастать (алгоритм неустойчив). В случае mid qmid le 1 погрешность не возрастает и численный алгоритм устойчив.

Список литературы

  • А.А.Самарский, А.В.Гулин.  Численные методы. Москва «Наука», 1989.
  • http://www.mgopu.ru/PVU/2.1/nummethods/Chapter1.htm
  • http://www.intuit.ru/department/calculate/calcmathbase/1/4.html

См. также

  • Практикум ММП ВМК, 4й курс, осень 2008

Содержание:

Регрессионный анализ:

Регрессионным анализом называется раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между случайными величинами по результатам наблюдений над ними. Сюда включаются методы выбора модели изучаемой зависимости и оценки ее параметров, методы проверки статистических гипотез о зависимости.

Пусть между случайными величинами X и Y существует линейная корреляционная зависимость. Это означает, что математическое ожидание Y линейно зависит от значений случайной величины X. График этой зависимости (линия регрессии Y на X) имеет уравнение Регрессионный анализ - определение и вычисление с примерами решения

Линейная модель пригодна в качестве первого приближения и в случае нелинейной корреляции, если рассматривать небольшие интервалы возможных значений случайных величин.

Пусть параметры линии регрессии Регрессионный анализ - определение и вычисление с примерами решения неизвестны, неизвестна и величина коэффициента корреляции Регрессионный анализ - определение и вычисление с примерами решения Над случайными величинами X и Y проделано n независимых наблюдений, в результате которых получены n пар значений: Регрессионный анализ - определение и вычисление с примерами решения Эти результаты могут служить источником информации о неизвестных значениях Регрессионный анализ - определение и вычисление с примерами решения надо только уметь эту информацию извлечь оттуда.

Неизвестная нам линия регрессии Регрессионный анализ - определение и вычисление с примерами решения как и всякая линия регрессии, имеет то отличительное свойство, что средний квадрат отклонений значений Y от нее минимален. Поэтому в качестве оценок для Регрессионный анализ - определение и вычисление с примерами решения можно принять те их значения, при которых имеет минимум функция Регрессионный анализ - определение и вычисление с примерами решения

Такие значения Регрессионный анализ - определение и вычисление с примерами решения, согласно необходимым условиям экстремума, находятся из системы уравнений:

Регрессионный анализ - определение и вычисление с примерами решения

Решения этой системы уравнений дают оценки называемые оценками по методу наименьших квадратов.Регрессионный анализ - определение и вычисление с примерами решения

и

Регрессионный анализ - определение и вычисление с примерами решения

Известно, что оценки по методу наименьших квадратов являются несмещенными и, более того, среди всех несмещенных оценок обладают наименьшей дисперсией. Для оценки коэффициента корреляции можно воспользоваться тем, что Регрессионный анализ - определение и вычисление с примерами решения где Регрессионный анализ - определение и вычисление с примерами решения средние квадратические отклонения случайных величин X и Y соответственно. Обозначим через Регрессионный анализ - определение и вычисление с примерами решения оценки этих средних квадратических отклонений на основе опытных данных. Оценки можно найти, например, по формуле (3.1.3). Тогда для коэффициента корреляции имеем оценку Регрессионный анализ - определение и вычисление с примерами решения

По методу наименьших квадратов можно находить оценки параметров линии регрессии и при нелинейной корреляции. Например, для линии регрессии вида Регрессионный анализ - определение и вычисление с примерами решения оценки параметров Регрессионный анализ - определение и вычисление с примерами решения находятся из условия минимума функции

Регрессионный анализ - определение и вычисление с примерами решения

Пример:

По данным наблюдений двух случайных величин найти коэффициент корреляции и уравнение линии регрессии Y наРегрессионный анализ - определение и вычисление с примерами решения

Решение. Вычислим величины, необходимые для использования формул (3.7.1)–(3.7.3):

 Регрессионный анализ - определение и вычисление с примерами решения

По формулам (3.7.1) и (3.7.2) получимРегрессионный анализ - определение и вычисление с примерами решения

Итак, оценка линии регрессии имеет вид Регрессионный анализ - определение и вычисление с примерами решения Так как Регрессионный анализ - определение и вычисление с примерами решения то по формуле (3.1.3)

Регрессионный анализ - определение и вычисление с примерами решения

Аналогично, Регрессионный анализ - определение и вычисление с примерами решения Поэтому в качестве оценки коэффициента корреляции имеем по формуле (3.7.3) величину Регрессионный анализ - определение и вычисление с примерами решения

Ответ.  Регрессионный анализ - определение и вычисление с примерами решения

Пример:

Получена выборка значений величин X и YРегрессионный анализ - определение и вычисление с примерами решения

Для представления зависимости между величинами предполагается использовать модель Регрессионный анализ - определение и вычисление с примерами решения Найти оценки параметров Регрессионный анализ - определение и вычисление с примерами решения

Решение. Рассмотрим сначала задачу оценки параметров этой модели в общем виде. Линия Регрессионный анализ - определение и вычисление с примерами решения играет роль линии регрессии и поэтому параметры ее можно найти из условия минимума функции (сумма квадратов отклонений значений Y от линии должна быть минимальной по свойству линии регрессии)Регрессионный анализ - определение и вычисление с примерами решения

Необходимые условия экстремума приводят к системе из двух уравнений:Регрессионный анализ - определение и вычисление с примерами решения

Откуда

Регрессионный анализ - определение и вычисление с примерами решения

Решения системы уравнений (3.7.4) и (3.7.5) и будут оценками по методу наименьших квадратов для параметров Регрессионный анализ - определение и вычисление с примерами решения

На основе опытных данных вычисляем:Регрессионный анализ - определение и вычисление с примерами решения

В итоге получаем систему уравнений (?????) и (?????) в виде Регрессионный анализ - определение и вычисление с примерами решения

Эта система имеет решения Регрессионный анализ - определение и вычисление с примерами решения

Ответ. Регрессионный анализ - определение и вычисление с примерами решения

Если наблюдений много, то результаты их обычно группируют и представляют в виде корреляционной таблицы.Регрессионный анализ - определение и вычисление с примерами решения

В этой таблице Регрессионный анализ - определение и вычисление с примерами решения равно числу наблюдений, для которых X находится в интервале Регрессионный анализ - определение и вычисление с примерами решения а Y – в интервале Регрессионный анализ - определение и вычисление с примерами решения Через Регрессионный анализ - определение и вычисление с примерами решения обозначено число наблюдений, при которых Регрессионный анализ - определение и вычисление с примерами решения а Y произвольно. Число наблюдений, при которых Регрессионный анализ - определение и вычисление с примерами решения а X произвольно, обозначено через Регрессионный анализ - определение и вычисление с примерами решения

Если величины дискретны, то вместо интервалов указывают отдельные значения этих величин. Для непрерывных случайных величин представителем каждого интервала считают его середину и полагают, что Регрессионный анализ - определение и вычисление с примерами решения и Регрессионный анализ - определение и вычисление с примерами решения  наблюдались Регрессионный анализ - определение и вычисление с примерами решения раз.

При больших значениях X и Y можно для упрощения вычислений перенести начало координат и изменить масштаб по каждой из осей, а после завершения вычислений вернуться к старому масштабу.

Пример:

Проделано 80 наблюдений случайных величин X и Y. Результаты наблюдений представлены в виде таблицы. Найти линию регрессии Y на X. Оценить коэффициент корреляции.Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Решение. Представителем каждого интервала будем считать его середину. Перенесем начало координат и изменим масштаб по каждой оси так, чтобы значения X и Y были удобны для вычислений. Для этого перейдем к новым переменным Регрессионный анализ - определение и вычисление с примерами решения Значения этих новых переменных указаны соответственно в самой верхней строке и самом левом столбце таблицы.

Чтобы иметь представление о виде линии регрессии, вычислим средние значения Регрессионный анализ - определение и вычисление с примерами решения при фиксированных значениях Регрессионный анализ - определение и вычисление с примерами решения:Регрессионный анализ - определение и вычисление с примерами решения

Нанесем эти значения на координатную плоскость, соединив для наглядности их отрезками прямой (рис. 3.7.1).Регрессионный анализ - определение и вычисление с примерами решения

По виду полученной ломанной линии можно предположить, что линия регрессии Y на X является прямой. Оценим ее параметры. Для этого сначала вычислим с учетом группировки данных в таблице все величины, необходимые для использования формул (3.31–3.33): Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Тогда

Регрессионный анализ - определение и вычисление с примерами решения

В новом масштабе оценка линии регрессии имеет вид Регрессионный анализ - определение и вычисление с примерами решения График этой прямой линии изображен на рис. 3.7.1.

Для оценки Регрессионный анализ - определение и вычисление с примерами решения по корреляционной таблице можно воспользоваться формулой (3.1.3):

Регрессионный анализ - определение и вычисление с примерами решения

Подобным же образом можно оценить Регрессионный анализ - определение и вычисление с примерами решения величиной Регрессионный анализ - определение и вычисление с примерами решения Тогда оценкой коэффициента корреляции может служить величина Регрессионный анализ - определение и вычисление с примерами решения

Вернемся к старому масштабу:

 Регрессионный анализ - определение и вычисление с примерами решения

Коэффициент корреляции пересчитывать не нужно, так как это величина безразмерная и от масштаба не зависит.

Ответ. Регрессионный анализ - определение и вычисление с примерами решения

Пусть некоторые физические величины X и Y связаны неизвестной нам функциональной зависимостью Регрессионный анализ - определение и вычисление с примерами решения Для изучения этой зависимости производят измерения Y при разных значениях X. Измерениям сопутствуют ошибки и поэтому результат каждого измерения случаен. Если систематической ошибки при измерениях нет, то Регрессионный анализ - определение и вычисление с примерами решения играет роль линии регрессии и все свойства линии регрессии приложимы к Регрессионный анализ - определение и вычисление с примерами решения. В частности, Регрессионный анализ - определение и вычисление с примерами решения обычно находят по методу наименьших квадратов.

Регрессионный анализ

Основные положения регрессионного анализа:

Основная задача регрессионного анализа — изучение зависимости между результативным признаком Y и наблюдавшимся признаком X, оценка функции регрессий.

Предпосылки регрессионного анализа:

  1. Y — независимые случайные величины, имеющие постоянную дисперсию;
  2. X— величины наблюдаемого признака (величины не случайные);
  3. условное математическое ожидание Регрессионный анализ - определение и вычисление с примерами решения можно представить в виде Регрессионный анализ - определение и вычисление с примерами решения

Выражение (2.1), как уже упоминалось в п. 1.2, называется функцией регрессии (или модельным уравнением регрессии) Y на X. Оценке в этом выражении подлежат параметры Регрессионный анализ - определение и вычисление с примерами решения называемые коэффициентами регрессии, а также Регрессионный анализ - определение и вычисление с примерами решения— остаточная дисперсия.

Остаточной дисперсией называется та часть рассеивания результативного признака, которую нельзя объяснить действием наблюдаемого признака; Остаточная дисперсия может служить для оценки точности подбора вида функции регрессии (модельного уравнения регрессии), полноты набора признаков, включенных в анализ. Оценки параметров функции регрессии находят, используя метод наименьших квадратов.

В данном вопросе рассмотрен линейный регрессионный анализ. Линейным он называется потому, что изучаем лишь те виды зависимостейРегрессионный анализ - определение и вычисление с примерами решения которые линейны по оцениваемым параметрам, хотя могут быть нелинейны по переменным X. Например, зависимости Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения линейны относительно параметров Регрессионный анализ - определение и вычисление с примерами решения Регрессионный анализ - определение и вычисление с примерами решения хотя вторая и третья зависимости нелинейны относительно переменных х. Вид зависимости Регрессионный анализ - определение и вычисление с примерами решения выбирают, исходя из визуальной оценки характера расположения точек на поле корреляции; опыта предыдущих исследований; соображений профессионального характера, основанных и знании физической сущности процесса.

Важное место в линейном регрессионном анализе занимает так называемая «нормальная регрессия». Она имеет место, если сделать предположения относительно закона распределения случайной величины Y. Предпосылки «нормальной регрессии»:

  1. Y — независимые случайные величины, имеющие постоянную дисперсию и распределенные по нормальному закону;
  2. X— величины наблюдаемого признака (величины не случайные);
  3. условное математическое ожидание Регрессионный анализ - определение и вычисление с примерами решения можно представить в виде (2.1).

В этом случае оценки коэффициентов регрессии — несмещённые с минимальной дисперсией и нормальным законом распределения. Из этого положения следует что при «нормальной регрессии» имеется возможность оценить значимость оценок коэффициентов регрессии, а также построить доверительный интервал для коэффициентов регрессии и условного математического ожидания M(YX=x).

Линейная регрессия

Рассмотрим простейший случай регрессионного анализа — модель вида (2.1), когда зависимость Регрессионный анализ - определение и вычисление с примерами решения линейна и по оцениваемым параметрам, и

по переменным. Оценки параметров модели (2.1) Регрессионный анализ - определение и вычисление с примерами решения обозначил Регрессионный анализ - определение и вычисление с примерами решенияОценку остаточной дисперсии Регрессионный анализ - определение и вычисление с примерами решения обозначим Регрессионный анализ - определение и вычисление с примерами решенияПодставив в формулу (2.1) вместо параметров их оценки, получим уравнение регрессии Регрессионный анализ - определение и вычисление с примерами решениякоэффициенты которого Регрессионный анализ - определение и вычисление с примерами решения находят из условия минимума суммы квадратов отклонений измеренных значений результативного признакаРегрессионный анализ - определение и вычисление с примерами решения от вычисленных по уравнению регрессии Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Составим систему нормальных уравнений: первое уравнение

Регрессионный анализ - определение и вычисление с примерами решения

откуда   Регрессионный анализ - определение и вычисление с примерами решения

второе уравнениеРегрессионный анализ - определение и вычисление с примерами решения

откудаРегрессионный анализ - определение и вычисление с примерами решения

Итак,
Регрессионный анализ - определение и вычисление с примерами решения
Оценки, полученные по способу наименьших квадратов, обладают минимальной дисперсией в классе линейных оценок. Решая систему (2.2) относительноРегрессионный анализ - определение и вычисление с примерами решения найдём оценки параметров Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Остаётся получить оценку параметра Регрессионный анализ - определение и вычисление с примерами решения . Имеем
Регрессионный анализ - определение и вычисление с примерами решения
где т — количество наблюдений.

Еслит велико, то для упрощения расчётов наблюдавшиеся данные принята группировать, т.е. строить корреляционную таблицу. Пример построения такой таблицы приведен в п. 1.5. Формулы для нахождения коэффициентов регрессии по сгруппированным данным те же, что и для расчёта по несгруппированным данным, но суммыРегрессионный анализ - определение и вычисление с примерами решениязаменяют на
Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения — частоты повторений соответствующих значений переменных. В дальнейшем часто используется этот наглядный приём вычислений.
 

Нелинейная регрессия

Рассмотрим случай, когда зависимость нелинейна по переменным х, например модель вида
Регрессионный анализ - определение и вычисление с примерами решения   Регрессионный анализ - определение и вычисление с примерами решения

На рис. 2.1 изображено поле корреляции. Очевидно, что зависимость между Y и X нелинейная и её графическим изображением является не прямая, а кривая. Оценкой выражения (2.6) является уравнение регрессии

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения —оценки коэффициентов регрессии Регрессионный анализ - определение и вычисление с примерами решения
Регрессионный анализ - определение и вычисление с примерами решения
Принцип нахождения коэффициентов тот же — метод наименьших квадратов, т.е.

Регрессионный анализ - определение и вычисление с примерами решения

или

Регрессионный анализ - определение и вычисление с примерами решения

Дифференцируя последнее равенство по Регрессионный анализ - определение и вычисление с примерами решения и приравнивая правые части нулю, получаем так называемую систему нормальных уравнений:

Регрессионный анализ - определение и вычисление с примерами решения

В общем случае нелинейной зависимости между переменными Y и X связь может выражаться многочленом k-й степени от x:

Регрессионный анализ - определение и вычисление с примерами решения

Коэффициенты регрессии определяют по принципу наименьших квадратов. Система нормальных уравнений имеет вид

Регрессионный анализ - определение и вычисление с примерами решения
Вычислив коэффициенты системы, её можно решить любым известным способом.
 

Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии

Проверить значимость оценок коэффициентов регрессии — значит установить, достаточна ли величина оценки для статистически обоснованного вывода о том, что коэффициент регрессии отличен от нуля. Для этого проверяют гипотезу о равенстве нулю коэффициента регрессии, соблюдая предпосылки «нормальной регрессии». В этом случае вычисляемая для проверки нулевой гипотезы Регрессионный анализ - определение и вычисление с примерами решения статистика

Регрессионный анализ - определение и вычисление с примерами решения

имеет распределение Стьюдента с к= n-2 степенями свободы (b — оценка коэффициента регрессии, Регрессионный анализ - определение и вычисление с примерами решения— оценка среднеквадратического отклонения

коэффициента регрессии, иначе стандартная ошибка оценки). По уровню значимости а и числу степеней свободы к находят по таблицам распределения Стьюдента (см. табл. 1 приложений) критическое значениеРегрессионный анализ - определение и вычисление с примерами решения удовлетворяющее условию Регрессионный анализ - определение и вычисление с примерами решения то нулевую гипотезу о равенстве нулю коэффициента регрессии отвергают, коэффициент считают значимым. ПриРегрессионный анализ - определение и вычисление с примерами решениянет оснований отвергать нулевую гипотезу.

Оценки среднеквадратического отклонения коэффициентов регрессии вычисляют по следующим формулам:
Регрессионный анализ - определение и вычисление с примерами решения
где   Регрессионный анализ - определение и вычисление с примерами решения— оценка остаточной дисперсии, вычисляемая по
формуле (2.5).

Доверительный интервал для значимых параметров строят по обычной схеме. Из условия

Регрессионный анализ - определение и вычисление с примерами решения
где а — уровень значимости, находим

Регрессионный анализ - определение и вычисление с примерами решения
 

Интервальная оценка для условного математического ожидания

Линия регрессии характеризует изменение условного математического ожидания результативного признака от вариации остальных признаков.

Точечной оценкой условного математического ожидания Регрессионный анализ - определение и вычисление с примерами решения является условное среднее Регрессионный анализ - определение и вычисление с примерами решения   Кроме точечной оценки для Регрессионный анализ - определение и вычисление с примерами решения можно
построить доверительный интервал в точке Регрессионный анализ - определение и вычисление с примерами решения

Известно, что Регрессионный анализ - определение и вычисление с примерами решения имеет распределение
Стьюдента с k=n—2 степенями свободы. Найдя оценку среднеквадратического отклонения для условного среднего, можно построить доверительный интервал для условного математического ожидания Регрессионный анализ - определение и вычисление с примерами решения

Оценку дисперсии условного среднего вычисляют по формуле
Регрессионный анализ - определение и вычисление с примерами решения
или для интервального ряда
Регрессионный анализ - определение и вычисление с примерами решения
Доверительный интервал находят из условия
Регрессионный анализ - определение и вычисление с примерами решения
где а — уровень значимости. Отсюда

Регрессионный анализ - определение и вычисление с примерами решения
Доверительный интервал для условного математического ожидания можно изобразить графически (рис, 2.2).

Регрессионный анализ - определение и вычисление с примерами решения

Из рис. 2.2 видно, что в точке Регрессионный анализ - определение и вычисление с примерами решения границы интервала наиболее близки друг другу. Расположение границ доверительного интервала показывает, что прогнозы по уравнению регрессии, хороши только в случае, если значение х не выходит за пределы выборки, по которой вычислено уравнение регрессии; иными словами, экстраполяция по уравнению регрессии может привести к значительным погрешностям.

Проверка значимости уравнения регрессии

Оценить значимость уравнения регрессии — значит установить, соответствует ли математическая, модель, выражающая зависимость между Y и X, экспериментальным данным. Для оценки значимости в предпосылках «нормальной регрессии» проверяют гипотезу Регрессионный анализ - определение и вычисление с примерами решения Если она отвергается, то считают, что между Y и X нет связи (или связь нелинейная). Для проверки нулевой гипотезы используют основное положение дисперсионного анализа о разбиении суммы квадратов на слагаемые. Воспользуемся разложением Регрессионный анализ - определение и вычисление с примерами решения— Общая сумма квадратов отклонений результативного признака

Регрессионный анализ - определение и вычисление с примерами решения разлагается на Регрессионный анализ - определение и вычисление с примерами решения (сумму, характеризующую влияние признака

X) и Регрессионный анализ - определение и вычисление с примерами решения (остаточную сумму квадратов, характеризующую влияние неучтённых факторов). Очевидно, чем меньше влияние неучтённых факторов, тем лучше математическая модель соответствует экспериментальным данным, так как вариация У в основном объясняется влиянием признака X.

Для проверки нулевой гипотезы вычисляют статистику Регрессионный анализ - определение и вычисление с примерами решения которая имеет распределение Фишера-Снедекора с АРегрессионный анализ - определение и вычисление с примерами решения степенями свободы (в п — число наблюдений). По уровню значимости а и числу степеней свободы Регрессионный анализ - определение и вычисление с примерами решения находят по таблицам F-распределение для уровня значимости а=0,05 (см. табл. 3 приложений) критическое значениеРегрессионный анализ - определение и вычисление с примерами решения удовлетворяющее условию Регрессионный анализ - определение и вычисление с примерами решения. Если Регрессионный анализ - определение и вычисление с примерами решениянулевую гипотезу отвергают, уравнение считают значимым. Если Регрессионный анализ - определение и вычисление с примерами решения то нет оснований отвергать нулевую гипотезу.

Многомерный регрессионный анализ

В случае, если изменения результативного признака определяются действием совокупности других признаков, имеет место многомерный регрессионный анализ. Пусть результативный признак У, а независимые признаки Регрессионный анализ - определение и вычисление с примерами решенияДля многомерного случая предпосылки регрессионного анализа можно сформулировать следующим образом: У -независимые случайные величины со средним Регрессионный анализ - определение и вычисление с примерами решения и постоянной дисперсией Регрессионный анализ - определение и вычисление с примерами решения— линейно независимые векторы Регрессионный анализ - определение и вычисление с примерами решения. Все положения, изложенные в п.2.1, справедливы для многомерного случая. Рассмотрим модель вида 

Регрессионный анализ - определение и вычисление с примерами решения

Оценке подлежат параметры Регрессионный анализ - определение и вычисление с примерами решения и остаточная дисперсия.

Заменив параметры их оценками, запишем уравнение регрессии

Регрессионный анализ - определение и вычисление с примерами решения
Коэффициенты в этом выражении находят методом наименьших квадратов.

Исходными данными для вычисления коэффициентов Регрессионный анализ - определение и вычисление с примерами решения является выборка из многомерной совокупности, представляемая обычно в виде матрицы X и вектора Y:
Регрессионный анализ - определение и вычисление с примерами решения   

Как и в двумерном случае, составляют систему нормальных уравнений
Регрессионный анализ - определение и вычисление с примерами решения
которую можно решить любым способом, известным из линейной алгебры. Рассмотрим один из них — способ обратной матрицы. Предварительно преобразуем систему уравнений. Выразим из первого уравнения значение Регрессионный анализ - определение и вычисление с примерами решениячерез остальные параметры:

Регрессионный анализ - определение и вычисление с примерами решения

Подставим в остальные уравнения системы вместо Регрессионный анализ - определение и вычисление с примерами решения полученное выражение:

Регрессионный анализ - определение и вычисление с примерами решения

Пусть С — матрица коэффициентов при неизвестных параметрах Регрессионный анализ - определение и вычисление с примерами решения Регрессионный анализ - определение и вычисление с примерами решения— матрица, обратная матрице С; Регрессионный анализ - определение и вычисление с примерами решения — элемент, стоящий на пересечении i-Й строки и i-го столбца матрицыРегрессионный анализ - определение и вычисление с примерами решения    — выражение
Регрессионный анализ - определение и вычисление с примерами решения. Тогда, используя формулы линейной алгебры,

запишем окончательные выражения для параметров:

Регрессионный анализ - определение и вычисление с примерами решения

Оценкой остаточной дисперсииРегрессионный анализ - определение и вычисление с примерами решения является

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения — измеренное значение результативного признака;Регрессионный анализ - определение и вычисление с примерами решения значение результативного признака, вычисленное по уравнению регрессий.

Если выборка получена из нормально распределенной генеральной совокупности, то, аналогично изложенному в п. 2.4, можно проверить значимость оценок коэффициентов регрессии, только в данном случае статистикуРегрессионный анализ - определение и вычисление с примерами решения вычисляют для каждого j-го коэффициента регрессии

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения—элемент обратной матрицы, стоящий на пересечении i-й строки и j-
го столбца;Регрессионный анализ - определение и вычисление с примерами решения —диагональный элемент обратной матрицы.

При заданном уровне значимости а и числе степеней свободы к=n— m—1 по табл. 1 приложений находят критическое значение Регрессионный анализ - определение и вычисление с примерами решения ЕслиРегрессионный анализ - определение и вычисление с примерами решения то нулевую гипотезу о равенстве нулю коэффициента регрессии отвергают. Оценку коэффициента считают значимой. Такую проверку производят последовательно для каждого коэффициента регрессии. ЕслиРегрессионный анализ - определение и вычисление с примерами решения то нет оснований отвергать нулевую гипотезу, оценку коэффициента регрессии считают незначимой.

Для значимых коэффициентов регрессии целесообразно построить доверительные интервалы по формуле (2.10). Для оценки значимости уравнения регрессии следует проверить нулевую гипотезу о том, что все коэффициенты регрессии (кроме свободного члена) равны нулю:Регрессионный анализ - определение и вычисление с примерами решения Регрессионный анализ - определение и вычисление с примерами решения — вектор коэффициентов регрессии). Нулевую гипотезу проверяют, так же как и в п. 2.6, с помощью статистики Регрессионный анализ - определение и вычисление с примерами решения, где Регрессионный анализ - определение и вычисление с примерами решения — сумма квадратов, характеризующая влияние признаков X; Регрессионный анализ - определение и вычисление с примерами решения — остаточная сумма квадратов, характеризующая влияние неучтённых факторов; Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решенияДля уровня значимости а и числа степеней свободы Регрессионный анализ - определение и вычисление с примерами решения по табл. 3 приложений находят критическое значение Регрессионный анализ - определение и вычисление с примерами решения Если Регрессионный анализ - определение и вычисление с примерами решения то нулевую гипотезу об одновременном равенстве нулю коэффициентов регрессии отвергают. Уравнение регрессии считают значимым. При Регрессионный анализ - определение и вычисление с примерами решения нет оснований отвергать нулевую гипотезу, уравнение регрессии считают незначимым.

Факторный анализ

Основные положения. В последнее время всё более широкое распространение находит один из новых разделов многомерного статистического анализа — факторный анализ. Первоначально этот метод

разрабатывался для объяснения многообразия корреляций между исходными параметрами. Действительно, результатом корреляционного анализа является матрица коэффициентов корреляций. При малом числе параметров можно произвести визуальный анализ этой матрицы. С ростом числа параметра (10 и более) визуальный анализ не даёт положительных результатов. Оказалось, что всё многообразие корреляционных связей можно объяснить действием нескольких обобщённых факторов, являющихся функциями исследуемых параметров, причём сами обобщённые факторы при этом могут быть и неизвестны, однако их можно выразить через исследуемые параметры.

Один из основоположников факторного анализа Л. Терстоун приводит такой пример: несколько сотен мальчиков выполняют 20 разнообразных гимнастических упражнений. Каждое упражнение оценивают баллами. Можно рассчитать матрицу корреляций между 20 упражнениями. Это большая матрица размером 20><20. Изучая такую матрицу, трудно уловить закономерность связей между упражнениями. Нельзя ли объяснить скрытую в таблице закономерность действием каких-либо обобщённых факторов, которые в результате эксперимента непосредственно, не оценивались? Оказалось, что обо всех коэффициентах корреляции можно судить по трём обобщённым факторам, которые и определяют успех выполнения всех 20 гимнастических упражнений: чувство равновесия, усилие правого плеча, быстрота движения тела.

Дальнейшие разработки факторного анализа доказали, что этот метод может быть с успехом применён в задачах группировки и классификации объектов. Факторный анализ позволяет группировать объекты со сходными сочетаниями признаков и группировать признаки с общим характером изменения от объекта к объекту. Действительно, выделенные обобщённые факторы можно использовать как критерии при классификации мальчиков по способностям к отдельным группам гимнастических упражнений.

Методы факторного анализа находят применение в психологии и экономике, социологии и экономической географии. Факторы, выраженные через исходные параметры, как правило, легко интерпретировать как некоторые существенные внутренние характеристики объектов.

Факторный анализ может быть использован и как самостоятельный метод исследования, и вместе с другими методами многомерного анализа, например в сочетании с регрессионным анализом. В этом случае для набора зависимых переменных наводят обобщённые факторы, которые потом входят в регрессионный анализ в качестве переменных. Такой подход позволяет сократить число переменных в регрессионном анализе, устранить коррелированность переменных, уменьшить влияние ошибок и в случае ортогональности выделенных факторов значительно упростить оценку значимости переменных.

Представление, информации в факторном анализе

Для проведения факторного анализа информация должна быть представлена в виде двумерной таблицы чисел размерностью Регрессионный анализ - определение и вычисление с примерами решенияаналогичной приведенной в п. 2.7 (матрица исходных данных). Строки этой матрицы должны соответствовать объектам наблюдений Регрессионный анализ - определение и вычисление с примерами решения столбцы — признакамРегрессионный анализ - определение и вычисление с примерами решениятаким образом, каждый признак является как бы статистическим рядом, в котором наблюдения варьируют от объекта к объекту. Признаки, характеризующие объект наблюдения, как правило, имеют различную размерность. Чтобы устранить влияние размерности и обеспечить сопоставимость признаков, матрицу исходных данных    обычно нормируют, вводя единый    масштаб. Самым распространенным видом нормировки является стандартизация. От переменных Регрессионный анализ - определение и вычисление с примерами решения переходят к переменным Регрессионный анализ - определение и вычисление с примерами решенияВ дальнейшем, говоря о матрице исходных переменных, всегда будем иметь в виду стандартизованную матрицу.

Основная модель факторного анализа. Основная модель факторного анализа имеет вид

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения-j-й признак (величина случайная); Регрессионный анализ - определение и вычисление с примерами решения— общие факторы (величины случайные, имеющие нормальный закон распределения); Регрессионный анализ - определение и вычисление с примерами решения— характерный фактор; Регрессионный анализ - определение и вычисление с примерами решения— факторные нагрузки, характеризующие существенность влияния каждого фактора (параметры модели, подлежащие определению);Регрессионный анализ - определение и вычисление с примерами решения — нагрузка характерного фактора.

Модель предполагает, что каждый из j признаков, входящих в исследуемый набор и заданных в стандартной форме, может быть представлен в виде линейной комбинации небольшого числа общих факторов Регрессионный анализ - определение и вычисление с примерами решения и характерного фактора Регрессионный анализ - определение и вычисление с примерами решения

Термин «общий фактор» подчёркивает, что каждый такой фактор имеет существенное значение для анализа всех признаковРегрессионный анализ - определение и вычисление с примерами решения, т.е.

Регрессионный анализ - определение и вычисление с примерами решения

Термин «характерный фактор» показывает, что он относится только к данному j-му признаку. Это специфика признака, которая не может быть, выражена через факторы Регрессионный анализ - определение и вычисление с примерами решения

Факторные нагрузки Регрессионный анализ - определение и вычисление с примерами решения. характеризуют величину влияния того или иного общего фактора в вариации данного признака. Основная задача факторного анализа — определение факторных нагрузок. Факторная модель относится к классу аппроксимационных. Параметры модели должны быть выбраны так, чтобы наилучшим образом аппроксимировать корреляции между наблюдаемыми признаками.

Для j-го признака и i-го объекта модель (2.19) можно записать в. виде

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения значение k-го фактора для i-го объекта.

Дисперсию признака Регрессионный анализ - определение и вычисление с примерами решения можно разложить на составляющие: часть, обусловленную действием общих факторов, — общность Регрессионный анализ - определение и вычисление с примерами решения и часть, обусловленную действием j-го характера фактора, характерность Регрессионный анализ - определение и вычисление с примерами решения Все переменные представлены в стандартизированном виде, поэтому дисперсий у-го признака Регрессионный анализ - определение и вычисление с примерами решенияДисперсия признака может быть выражена через факторы и в конечном счёте через факторные нагрузки.

Если общие и характерные факторы не коррелируют между собой, то дисперсию j-го признака можно представить в виде

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения —доля дисперсии признака Регрессионный анализ - определение и вычисление с примерами решения приходящаяся на k-й фактор.

Полный вклад k-го фактора в суммарную дисперсию признаков

Регрессионный анализ - определение и вычисление с примерами решения

Вклад общих факторов в суммарную дисперсию Регрессионный анализ - определение и вычисление с примерами решения
 

Факторное отображение

Используя модель (2.19), запишем выражения для каждого из параметров:

Регрессионный анализ - определение и вычисление с примерами решения
Коэффициенты системы (2,21) — факторные нагрузки — можно представить в виде матрицы, каждая строка которой соответствует параметру, а столбец — фактору.

Факторный анализ позволяет получить не только матрицу отображений, но и коэффициенты корреляции между параметрами и

факторами, что является важной характеристикой качества факторной модели. Таблица таких коэффициентов корреляции называется факторной структурой или просто структурой.

Коэффициенты отображения можно выразить через выборочные парные коэффициенты корреляции. На этом основаны методы вычисления факторного отображения.

Рассмотрим связь между элементами структуры и коэффициентами отображения. Для этого, учитывая выражение (2.19) и определение выборочного коэффициента корреляции, умножим уравнения системы (2.21) на соответствующие факторы, произведём суммирование по всем n наблюдениям и, разделив на n, получим следующую систему уравнений:

Регрессионный анализ - определение и вычисление с примерами решения

гдеРегрессионный анализ - определение и вычисление с примерами решения — выборочный коэффициент корреляции между j-м параметром и к-
м фактором;Регрессионный анализ - определение и вычисление с примерами решения — коэффициент корреляции между к-м и р-м факторами.

Если предположить, что общие факторы между собой, не коррелированы, то уравнения    (2.22) можно записать в виде

Регрессионный анализ - определение и вычисление с примерами решения, т.е. коэффициенты отображения равны
элементам структуры.

Введём понятие, остаточного коэффициента корреляции и остаточной корреляционной матрицы. Исходной информацией для построения факторной модели (2.19) служит матрица выборочных парных коэффициентов корреляции. Используя построенную факторную модель, можно снова вычислить коэффициенты корреляции между признаками и сравнись их с исходными Коэффициентами корреляции. Разница между ними и есть остаточный коэффициент корреляции.

В случае независимости факторов имеют место совсем простые выражения для вычисляемых коэффициентов корреляции между параметрами: для их вычисления достаточно взять сумму произведений коэффициентов отображения, соответствующих наблюдавшимся признакам: Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения —вычисленный по отображению коэффициент корреляции между j-м
и к-м признаком. Остаточный коэффициент корреляции

Регрессионный анализ - определение и вычисление с примерами решения

Матрица остаточных коэффициентов корреляции называется остаточной матрицей или матрицей остатков

Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения — матрица остатков; R — матрица выборочных парных коэффициентов корреляции, или полная матрица; R’— матрица вычисленных по отображению коэффициентов корреляции.

Результаты факторного анализа удобно представить в виде табл. 2.10.
Регрессионный анализ - определение и вычисление с примерами решения

Здесь суммы квадратов нагрузок по строкам — общности параметров, а суммы квадратов нагрузок по столбцам — вклады факторов в суммарную дисперсию параметров. Имеет место соотношение

Регрессионный анализ - определение и вычисление с примерами решения

Определение факторных нагрузок

Матрицу факторных нагрузок можно получить различными способами. В настоящее время наибольшее распространение получил метод главных факторов. Этот метод основан на принципе последовательных приближений и позволяет достичь любой точности. Метод главных факторов предполагает использование ЭВМ. Существуют хорошие алгоритмы и программы, реализующие все вычислительные процедуры.

Введём понятие редуцированной корреляционной матрицы или просто редуцированной матрицы. Редуцированной называется матрица выборочных коэффициентов корреляцииРегрессионный анализ - определение и вычисление с примерами решения у которой на главной диагонали стоят значения общностей Регрессионный анализ - определение и вычисление с примерами решения:Регрессионный анализ - определение и вычисление с примерами решения

Редуцированная и полная матрицы связаны соотношением

Регрессионный анализ - определение и вычисление с примерами решения

где D — матрица характерностей.

Общности, как правило, неизвестны, и нахождение их в факторном анализе представляет серьезную проблему. Вначале определяют (хотя бы приближённо) число общих факторов, совокупность, которых может с достаточной точностью аппроксимировать все взаимосвязи выборочной корреляционной матрицы. Доказано, что число общих факторов (общностей) равно рангу редуцированной матрицы, а при известном ранге можно по выборочной корреляционной матрице найти оценки общностей. Числа общих факторов можно определить априори, исходя из физической природы эксперимента. Затем рассчитывают матрицу факторных нагрузок. Такая матрица, рассчитанная методом главных факторов, обладает одним интересным свойством: сумма произведений каждой пары её столбцов равна нулю, т.е. факторы попарно ортогональны.

Сама процедура нахождения факторных нагрузок, т.е. матрицы А, состоит из нескольких шагов и заключается в следующем: на первом шаге ищут коэффициенты факторных нагрузок при первом факторе так, чтобы сумма вкладов данного фактора в суммарную общность была максимальной:Регрессионный анализ - определение и вычисление с примерами решения

Максимум Регрессионный анализ - определение и вычисление с примерами решения должен быть найден при условии
Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения —общностьРегрессионный анализ - определение и вычисление с примерами решенияпараметраРегрессионный анализ - определение и вычисление с примерами решения

Затем рассчитывают матрицу коэффициентов корреляции с учётом только первого фактораРегрессионный анализ - определение и вычисление с примерами решения Имея эту матрицу, получают первую матрицу остатков:Регрессионный анализ - определение и вычисление с примерами решения

На втором шаге определяют коэффициенты нагрузок при втором факторе так, чтобы сумма вкладов второго фактора в остаточную общность (т.е. полную общность без учёта той части, которая приходится на долю первого фактора) была максимальной. Сумма квадратов нагрузок при втором фактореРегрессионный анализ - определение и вычисление с примерами решения

Максимум Регрессионный анализ - определение и вычисление с примерами решения находят из условия
Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения— коэффициент корреляции из первой матрицы остатков; Регрессионный анализ - определение и вычисление с примерами решения — факторные нагрузки с учётом второго фактора. Затем рассчитыва коэффициентов корреляций с учётом второго фактора и вычисляют вторую матрицу остатков: Регрессионный анализ - определение и вычисление с примерами решения

Факторный анализ учитывает суммарную общность. Исходная суммарная общностьРегрессионный анализ - определение и вычисление с примерами решения Итерационный процесс выделения факторов заканчивают, когда учтённая выделенными факторами суммарная общность отличается от исходной суммарной общности меньше чем на Регрессионный анализ - определение и вычисление с примерами решения— наперёд заданное малое число).

Адекватность факторной модели оценивается по матрице остатков (если величины её коэффициентов малы, то модель считают адекватной).

Такова последовательность шагов для нахождения факторных нагрузок. Для нахождения максимума функции (2.24) при условии (2.25) используют метод множителей Лагранжа, который приводит к системе т уравнений относительно m неизвестных Регрессионный анализ - определение и вычисление с примерами решения

Метод главных компонент

Разновидностью метода главных факторов является метод главных компонент или компонентный анализ, который реализует модель вида

Регрессионный анализ - определение и вычисление с примерами решения

где m — количество параметров (признаков).

Каждый из наблюдаемых, параметров линейно зависит от m не коррелированных между собой новых компонент (факторов) Регрессионный анализ - определение и вычисление с примерами решенияПо сравнению с моделью факторного анализа (2.19) в модели (2.28) отсутствует характерный фактор, т.е. считается, что вся вариация параметра может быть объяснена только действием общих или главных факторов. В случае компонентного анализа исходной является матрица коэффициентов корреляции, где на главной диагонали стоят единицы. Результатом компонентного анализа, так же как и факторного, является матрица факторных нагрузок. Поиск факторного решения — это ортогональное преобразование матрицы исходных переменных, в результате которого каждый параметр может быть представлен линейной комбинацией найденных m факторов, которые называют главными компонентами. Главные компоненты легко выражаются через наблюдённые параметры.

Если для дальнейшего анализа оставить все найденные т компонент, то тем самым будет использована вся информация, заложенная в корреляционной матрице. Однако это неудобно и нецелесообразно. На практике обычно оставляют небольшое число компонент, причём количество их определяется долей суммарной дисперсии, учитываемой этими компонентами. Существуют различные критерии для оценки числа оставляемых компонент; чаще всего используют следующий простой критерий: оставляют столько компонент, чтобы суммарная дисперсия, учитываемая ими, составляла заранее установленное число процентов. Первая из компонент должна учитывать максимум суммарной дисперсии параметров; вторая — не коррелировать с первой и учитывать максимум оставшейся дисперсии и так до тех пор, пока вся дисперсия не будет учтена. Сумма учтённых всеми компонентами дисперсий равна сумме дисперсий исходных параметров. Математический аппарат компонентного анализа полностью совпадает с аппаратом метода главных факторов. Отличие только в исходной матрице корреляций.

Компонента (или фактор) через исходные переменные выражается следующим образом:

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения— элементы факторного решения:Регрессионный анализ - определение и вычисление с примерами решения— исходные переменные; Регрессионный анализ - определение и вычисление с примерами решения.— k-е собственное значение; р — количество оставленных главных
компонент.

Для иллюстрации возможностей факторного анализа покажем, как, используя метод главных компонент, можно сократить размерность пространства независимых переменных, перейдя от взаимно коррелированных параметров к независимым факторам, число которых р

Следует особо остановиться на интерпретации результатов, т.е. на смысловой стороне факторного анализа. Собственно факторный анализ состоит из двух важных этапов; аппроксимации корреляционной матрицы и интерпретации результатов. Аппроксимировать корреляционную матрицу, т.е. объяснить корреляцию между параметрами действием каких-либо общих для них факторов, и выделить сильно коррелирующие группы параметров достаточно просто:    из корреляционной матрицы одним из методов

факторного анализа непосредственно получают матрицу нагрузок — факторное решение, которое называют прямым факторным решением. Однако часто это решение не удовлетворяет исследователей. Они хотят интерпретировать фактор как скрытый, но существенный параметр, поведение которого определяет поведение некоторой своей группы наблюдаемых параметров, в то время как, поведение других параметров определяется поведением других факторов. Для этого у каждого параметра должна быть наибольшая по модулю факторная нагрузка с одним общим фактором. Прямое решение следует преобразовать, что равносильно повороту осей общих факторов. Такие преобразования называют вращениями, в итоге получают косвенное факторное решение, которое и является результатом факторного анализа.

Приложения

Значение t — распределения Стьюдента Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Понятие о регрессионном анализе. Линейная выборочная регрессия. Метод наименьших квадратов (МНК)

Основные задачи регрессионного анализа:

  •  Вычисление выборочных коэффициентов регрессии
  •  Проверка значимости коэффициентов регрессии
  •  Проверка адекватности модели
  •  Выбор лучшей регрессии
  •  Вычисление стандартных ошибок, анализ остатков

Построение простой регрессии по экспериментальным данным.

Предположим, что случайные величины Регрессионный анализ - определение и вычисление с примерами решения связаны линейной корреляционной зависимостью Регрессионный анализ - определение и вычисление с примерами решения для отыскания которой проведено Регрессионный анализ - определение и вычисление с примерами решения независимых измерений Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Диаграмма рассеяния (разброса, рассеивания)
Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — координаты экспериментальных точек.

Выборочное уравнение прямой линии регрессии Регрессионный анализ - определение и вычисление с примерами решения имеет вид

Регрессионный анализ - определение и вычисление с примерами решения

Задача: подобрать Регрессионный анализ - определение и вычисление с примерами решения таким образом, чтобы экспериментальные точки как можно ближе лежали к прямой Регрессионный анализ - определение и вычисление с примерами решения

Для того, что бы провести прямую Регрессионный анализ - определение и вычисление с примерами решения воспользуемся МНК. Потребуем,

чтобы Регрессионный анализ - определение и вычисление с примерами решения

Постулаты регрессионного анализа, которые должны выполняться при использовании МНК.

  1. Регрессионный анализ - определение и вычисление с примерами решения подчинены нормальному закону распределения.
  2. Дисперсия Регрессионный анализ - определение и вычисление с примерами решения постоянна и не зависит от номера измерения.
  3. Результаты наблюдений Регрессионный анализ - определение и вычисление с примерами решения в разных точках независимы.
  4. Входные переменные Регрессионный анализ - определение и вычисление с примерами решения независимы, неслучайны и измеряются без ошибок.

Введем функцию ошибок Регрессионный анализ - определение и вычисление с примерами решения и найдём её минимальное значение

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Решив систему, получим искомые значения Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения является несмещенными оценками истинных значений коэффициентов Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения где 

Регрессионный анализ - определение и вычисление с примерами решения несмещенная оценка корреляционного момента (ковариации),
Регрессионный анализ - определение и вычисление с примерами решения несмещенная оценка дисперсии Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения выборочная ковариация,

  Регрессионный анализ - определение и вычисление с примерами решения выборочная дисперсия Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — выборочный коэффициент корреляции

Коэффициент детерминации

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — наблюдаемое экспериментальное значение Регрессионный анализ - определение и вычисление с примерами решения при Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — предсказанное значение Регрессионный анализ - определение и вычисление с примерами решения удовлетворяющее уравнению регрессии

Регрессионный анализ - определение и вычисление с примерами решения — средневыборочное значение Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — коэффициент детерминации, доля изменчивости Регрессионный анализ - определение и вычисление с примерами решения объясняемая  рассматриваемой регрессионной моделью. Для парной линейной регрессии Регрессионный анализ - определение и вычисление с примерами решения

Коэффициент детерминации принимает значения от 0 до 1. Чем ближе значение коэффициента к 1, тем сильнее зависимость. При оценке регрессионных моделей это используется для доказательства адекватности модели (качества регрессии). Для приемлемых моделей предполагается, что коэффициент детерминации должен быть хотя бы не меньше 0,5 (в этом случае коэффициент множественной корреляции превышает по модулю 0,7). Модели с коэффициентом детерминации выше 0,8 можно признать достаточно хорошими (коэффициент корреляции превышает 0,9). Подтверждение адекватности модели проводится на основе дисперсионного анализа путем проверки гипотезы о значимости коэффициента детерминации.

Регрессионный анализ - определение и вычисление с примерами решения регрессия незначима

Регрессионный анализ - определение и вычисление с примерами решения регрессия значима

Регрессионный анализ - определение и вычисление с примерами решения — уровень значимости 

Регрессионный анализ - определение и вычисление с примерами решения — статистический критерий

Критическая область — правосторонняя; Регрессионный анализ - определение и вычисление с примерами решения

Если Регрессионный анализ - определение и вычисление с примерами решения то нулевая гипотеза отвергается на заданном уровне значимости, следовательно, коэффициент детерминации значим, следовательно, регрессия адекватна.

Мощность статистического критерия. Функция мощности

Регрессионный анализ - определение и вычисление с примерами решения

Определение. Мощностью критерия Регрессионный анализ - определение и вычисление с примерами решения называют вероятность попадания критерия в критическую область при условии, что справедлива конкурирующая гипотеза.

Задача: построить критическую область таким образом, чтобы мощность критерия была максимальной.

Определение. Наилучшей критической областью (НКО) называют критическую область, которая обеспечивает минимальную ошибку второго рода Регрессионный анализ - определение и вычисление с примерами решения

Пример:

По паспортным данным автомобиля расход топлива на 100 километров составляет 10 литров. В результате измерения конструкции двигателя ожидается, что расход топлива уменьшится. Для проверки были проведены испытания 25 автомобилей с модернизированным двигателем; выборочная средняя расхода топлива по результатам испытаний составила 9,3 литра. Предполагая, что выборка получена из нормально распределенной генеральной совокупности с математическим ожиданием Регрессионный анализ - определение и вычисление с примерами решения и дисперсией Регрессионный анализ - определение и вычисление с примерами решения проверить гипотезу, утверждающую, что изменение конструкции двигателя не повлияло на расход топлива.

Регрессионный анализ - определение и вычисление с примерами решения

3) Уровень значимости Регрессионный анализ - определение и вычисление с примерами решения

4) Статистический критерий

Регрессионный анализ - определение и вычисление с примерами решения

5) Критическая область — левосторонняя

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения  следовательно Регрессионный анализ - определение и вычисление с примерами решения отвергается на уровне значимости Регрессионный анализ - определение и вычисление с примерами решения

Пример:

В условиях примера 1 предположим, что наряду с Регрессионный анализ - определение и вычисление с примерами решения рассматривается конкурирующая гипотеза Регрессионный анализ - определение и вычисление с примерами решения а критическая область задана неравенством Регрессионный анализ - определение и вычисление с примерами решения Найти вероятность ошибок I рода и II рода.

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения автомобилей имеют меньший расход топлива)

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения  автомобилей, имеющих расход топлива 9л на 100 км, классифицируются как автомобили, имеющие расход 10 литров).

Определение. Пусть проверяется Регрессионный анализ - определение и вычисление с примерами решения — критическая область критерия с заданным уровнем значимости Регрессионный анализ - определение и вычисление с примерами решения Функцией мощности критерия Регрессионный анализ - определение и вычисление с примерами решения называется вероятность отклонения Регрессионный анализ - определение и вычисление с примерами решения как функция параметра Регрессионный анализ - определение и вычисление с примерами решения т.е.

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — ошибка 1-ого рода

Регрессионный анализ - определение и вычисление с примерами решения — мощность критерия

Пример:

Построить график функции мощности из примера 2 для Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения попадает в критическую область.

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Пример:

Какой минимальный объем выборки следует взять в условии примера 2 для того, чтобы обеспечить Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Лемма Неймана-Пирсона.

При проверке простой гипотезы Регрессионный анализ - определение и вычисление с примерами решения против простой альтернативной гипотезы Регрессионный анализ - определение и вычисление с примерами решения наилучшая критическая область (НКО) критерия заданного уровня значимости Регрессионный анализ - определение и вычисление с примерами решения состоит из точек выборочного пространства (выборок объема Регрессионный анализ - определение и вычисление с примерами решения для которых справедливо неравенство:

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — константа, зависящая от Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — элементы выборки;

Регрессионный анализ - определение и вычисление с примерами решения — функция правдоподобия при условии, что соответствующая гипотеза верна.

Пример:

Случайная величина Регрессионный анализ - определение и вычисление с примерами решения имеет нормальное распределение с параметрами Регрессионный анализ - определение и вычисление с примерами решения известно. Найти НКО для проверки Регрессионный анализ - определение и вычисление с примерами решения против Регрессионный анализ - определение и вычисление с примерами решенияпричем Регрессионный анализ - определение и вычисление с примерами решения

Решение:

Регрессионный анализ - определение и вычисление с примерами решения

Ошибка первого рода: Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

НКО: Регрессионный анализ - определение и вычисление с примерами решения

Пример:

Для зависимостиРегрессионный анализ - определение и вычисление с примерами решения заданной корреляционной табл. 13, найти оценки параметров Регрессионный анализ - определение и вычисление с примерами решения уравнения линейной регрессии Регрессионный анализ - определение и вычисление с примерами решения остаточную дисперсию; выяснить значимость уравнения регрессии при Регрессионный анализ - определение и вычисление с примерами решения

Решение. Воспользуемся предыдущими результатами

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Согласно формуле (24), уравнение регрессии будет иметь вид Регрессионный анализ - определение и вычисление с примерами решения тогда Регрессионный анализ - определение и вычисление с примерами решения

Для выяснения значимости уравнения регрессии вычислим суммы Регрессионный анализ - определение и вычисление с примерами решенияСоставим расчетную таблицу:

Регрессионный анализ - определение и вычисление с примерами решения

Из (27) и (28) по данным таблицы получим Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения по табл. П7 находим Регрессионный анализ - определение и вычисление с примерами решения 

Вычислим статистику

Регрессионный анализ - определение и вычисление с примерами решения

Так как Регрессионный анализ - определение и вычисление с примерами решения то уравнение регрессии значимо. Остаточная дисперсия равна Регрессионный анализ - определение и вычисление с примерами решения

  • Корреляционный анализ
  • Статистические решающие функции
  • Случайные процессы
  • Выборочный метод
  • Проверка гипотезы о равенстве вероятностей
  • Доверительный интервал для математического ожидания
  • Доверительный интервал для дисперсии
  • Проверка статистических гипотез


Загрузить PDF


Загрузить PDF

Стандартная ошибка оценки служит для того, чтобы выяснить, как линия регрессии соответствует набору данных. Если у вас есть набор данных, полученных в результате измерения, эксперимента, опроса или из другого источника, создайте линию регрессии, чтобы оценить дополнительные данные. Стандартная ошибка оценки характеризует, насколько верна линия регрессии.

  1. Изображение с названием Calculate the Standard Error of Estimate Step 1

    1

    Создайте таблицу с данными. Таблица должна состоять из пяти столбцов, и призвана облегчить вашу работу с данными. Чтобы вычислить стандартную ошибку оценки, понадобятся пять величин. Поэтому разделите таблицу на пять столбцов. Обозначьте эти столбцы так:[1]

  2. Изображение с названием Calculate the Standard Error of Estimate Step 2

    2

    Введите данные в таблицу. Когда вы проведете эксперимент или опрос, вы получите пары данных — независимую переменную обозначим как x, а зависимую или конечную переменную как y. Введите эти значения в первые два столбца таблицы.

    • Не перепутайте данные. Помните, что определенному значению независимой переменной должно соответствовать конкретное значение зависимой переменной.
    • Например, рассмотрим следующий набор пар данных:
      • (1,2)
      • (2,4)
      • (3,5)
      • (4,4)
      • (5,5)
  3. Изображение с названием Calculate the Standard Error of Estimate Step 3

    3

    Вычислите линию регрессии. Сделайте это на основе представленных данных. Эта линия также называется линией наилучшего соответствия или линией наименьших квадратов. Расчет можно сделать вручную, но это довольно утомительно. Поэтому рекомендуем воспользоваться графическим калькулятором или онлайн-сервисом, которые быстро вычислят линию регрессии по вашим данным.[2]

    • В этой статье предполагается, что уравнение линии регрессии дано (известно).
    • В нашем примере линия регрессии описывается уравнением y^{{prime }}=0,6x+2,2.
  4. Изображение с названием Calculate the Standard Error of Estimate Step 4

    4

    Вычислите прогнозируемые значения по линии регрессии. С помощью уравнения линии регрессии можно вычислить прогнозируемые значения «y» для значений «x», которые есть и которых нет в наборе данных.

    Реклама

  1. Изображение с названием Calculate the Standard Error of Estimate Step 5

    1

    Вычислите ошибку каждого прогнозируемого значения. В четвертом столбце таблицы запишите ошибку каждого прогнозируемого значения. В частности, вычтите прогнозируемое значение (y^{{prime }}) из фактического (наблюдаемого) значения (y).[3]

    • В нашем примере вычисления будут выглядеть так:
  2. Изображение с названием Calculate the Standard Error of Estimate Step 6

    2

    Вычислите квадраты ошибок. Возведите в квадрат каждое значение четвертого столбца, а результаты запишите в последнем (пятом) столбце таблицы.

    • В нашем примере вычисления будут выглядеть так:
  3. Изображение с названием Calculate the Standard Error of Estimate Step 7

    3

    Найдите сумму квадратов ошибок. Она пригодится для вычисления стандартного отклонения, дисперсии и других величин. Чтобы найти сумму квадратов ошибок, сложите все значения пятого столбца. [4]

    • В нашем примере вычисления будут выглядеть так:
      • 0,64+0,36+1,0+0,36+0,04=2,4
  4. Изображение с названием Calculate the Standard Error of Estimate Step 8

    4

    Завершите расчеты. Стандартная ошибка оценки — это квадратный корень из среднего значения суммы квадратов ошибок. Обычно ошибка оценки обозначается греческой буквой sigma . Поэтому сначала разделите сумму квадратов ошибок на число пар данных. А потом из полученного значения извлеките квадратный корень.[5]

    • Если рассматриваемые данные представляют всю совокупность, среднее значение находится так: сумму нужно разделить на N (количество пар данных). Если же рассматриваемые данные представляют некоторую выборку, вместо N подставьте N-2.
    • В нашем примере, скорее всего, имеет место выборка, потому что мы рассматриваем всего 5 пар данных. Поэтому стандартную ошибку оценки вычислите следующим образом:
  5. Изображение с названием Calculate the Standard Error of Estimate Step 9

    5

    Интерпретируйте полученный результат. Стандартная ошибка оценки — это статистический показатель, которые оценивает, насколько близко измеренные данные лежат к линии регрессии. Ошибка оценка «0» означает, что каждая точка лежит непосредственно на линии. Чем выше ошибка оценки, тем дальше от линии регрессии лежат точки.[6]

    • В нашем примере выборка достаточно маленькая, поэтому стандартная оценка ошибки 0,894 является довольно низкой и характеризует близко расположенные данные.

    Реклама

Об этой статье

Эту страницу просматривали 4834 раза.

Была ли эта статья полезной?

Так как значения
известны без ошибок, а значениянезависимы и равноточны, то оценка
дисперсии вычисляется по формуле:

,
где
,
(23)

–фактические
значения результативного признака,
полученного по данным наблюдений,
– значения результативного признака,
рассчитанного по уравнению регрессии
и полученного подстановкой значений
факторного признака в уравнение
регрессии:.
В нашем примере.

Средняя квадратическая
ошибка уравнения регрессии:
.

Для нахождения
оценки дисперсии
величинысоставим таблицу:

1

2

3

4

5

6

7

8

9

10

4,055

4,525

4,995

5,465

5,935

6,405

6,875

7,345

7,815

8,285

3

7

13

14

15

18

12

11

2

5

35,11

39,3329

52,1638

64,67

78,4647

94,23

111,4733

127,8209

153,35

165,174

30,8811

40,9186

52,2328

64,8238

78,6916

93,8362

110,2547

127,9559

146,9309

167,1827

17,8832

2,5143

0,0048

0,0236

0,05149

0,1551

1,4778

0,01822

41,2047

4,0350

53,6497

17,6001

0,0618

0,3311

0,7723

2,7918

17,7335

0,2004

82,4094

20,1752

.

Средняя квадратическая
ошибка уравнения регрессии

.

Сравним полученную
величину со средним квадратическим
отклонением результативного признака
,
получим,
т.е.,
следовательно, использование уравнения
регрессии является целесообразным.

2.10. Интервальные оценки параметров квадратичной линии регрессии генеральной совокупности

Доверительные
интервалы для коэффициентов
при заданной доверительной вероятности
имеют вид:,
гдеопределяется из таблицы для закона
распределения Стьюдента по выходным
величинами числу степеней свободы.

В данном случае
,,
отсюда.

Оценки
коэффициентов

определяются формулами

,

где
,– определитель системы (22),– алгебраическое дополнение элементав определителе.

;

;

;

;
;

;

.

;

;

;

;

;

;

.

;

;

;

;

;

;

.

2.11. Нахождение коэффициента детерминации

Коэффициент
детерминации, интегрально характеризующий
точностные свойства уравнения регрессии,
определяем по формуле (21).

,
,,

.

Сравним
с.– следовательно, полученная регрессионная
модель работоспособна.

2.12. Проверка адекватности регрессионной модели

Проверка адекватности
модели возможна только при
,
где– число опытов (),– число оцениваемых коэффициентов
регрессии математической модели ().
В нашем случае,
следовательно, можно проводить проверку
адекватности.

Найдем дисперсию
адекватности
,

где

;
.

Получим
.

Найдем
,где
;.

Найдем
,
где– уровень значимости,– число степеней свободы дисперсии
адекватности,– число степеней свободы дисперсии
воспроизводимости.

Сравним
и,.

Построенная модель
предсказывает значения выходной величины
с той же точностью, что и результаты
эксперимента.

Список литературы:

  1. Гмурман
    В.Е. Теория вероятностей и математическая
    статистика: учеб. пособие для вузов.
    М.: Высш. шк., 2003. – 479 с.

  2. Гмурман
    В.Е. Руководство к решению задач по
    теории вероятностей и математической
    статистике: учеб. пособие для вузов.
    М.: Высш. шк., 2003. – 405 с.

  3. Виленкин
    Н.Я., Потапов В.Г. Задачник-практикум по
    теории вероятностей с элементами
    комбинаторики и математической
    статистики. М.: Просвещение, 1979. – 112 с.

  4. Кремер
    Н.Ш. Теория вероятностей и математическая
    статистика. М.: ЮНИТИ-ДАНА, 2004. – 573 с.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Когда мы подгоняем регрессионную модель к набору данных, нас часто интересует, насколько хорошо регрессионная модель «подходит» к набору данных. Две метрики, обычно используемые для измерения согласия, включают R -квадрат (R2) и стандартную ошибку регрессии , часто обозначаемую как S.

В этом руководстве объясняется, как интерпретировать стандартную ошибку регрессии (S), а также почему она может предоставить более полезную информацию, чем R 2 .

Стандартная ошибка по сравнению с R-квадратом в регрессии

Предположим, у нас есть простой набор данных, который показывает, сколько часов 12 студентов занимались в день в течение месяца, предшествующего важному экзамену, а также их баллы за экзамен:

Пример интерпретации стандартной ошибки регрессии

Если мы подгоним простую модель линейной регрессии к этому набору данных в Excel, мы получим следующий результат:

Вывод регрессии в Excel

R-квадрат — это доля дисперсии переменной отклика, которая может быть объяснена предикторной переменной. При этом 65,76% дисперсии экзаменационных баллов можно объяснить количеством часов, потраченных на учебу.

Стандартная ошибка регрессии — это среднее расстояние, на которое наблюдаемые значения отклоняются от линии регрессии. В этом случае наблюдаемые значения отклоняются от линии регрессии в среднем на 4,89 единицы.

Если мы нанесем фактические точки данных вместе с линией регрессии, мы сможем увидеть это более четко:

Обратите внимание, что некоторые наблюдения попадают очень близко к линии регрессии, в то время как другие не так близки. Но в среднем наблюдаемые значения отклоняются от линии регрессии на 4,19 единицы .

Стандартная ошибка регрессии особенно полезна, поскольку ее можно использовать для оценки точности прогнозов. Примерно 95% наблюдений должны находиться в пределах +/- двух стандартных ошибок регрессии, что является быстрым приближением к 95% интервалу прогнозирования.

Если мы заинтересованы в прогнозировании с использованием модели регрессии, стандартная ошибка регрессии может быть более полезной метрикой, чем R-квадрат, потому что она дает нам представление о том, насколько точными будут наши прогнозы в единицах измерения.

Чтобы проиллюстрировать, почему стандартная ошибка регрессии может быть более полезной метрикой для оценки «соответствия» модели, рассмотрим другой пример набора данных, который показывает, сколько часов 12 студентов занимались в день в течение месяца, предшествующего важному экзамену, а также их экзаменационная оценка:

Обратите внимание, что это точно такой же набор данных, как и раньше, за исключением того, что все значения s сокращены вдвое.Таким образом, студенты из этого набора данных учились ровно в два раза дольше, чем студенты из предыдущего набора данных, и получили ровно половину экзаменационного балла.

Если мы подгоним простую модель линейной регрессии к этому набору данных в Excel, мы получим следующий результат:

Вывод регрессии из простой линейной модели в Excel

Обратите внимание, что R-квадрат 65,76% точно такой же, как и в предыдущем примере.

Однако стандартная ошибка регрессии составляет 2,095 , что ровно вдвое меньше стандартной ошибки регрессии в предыдущем примере.

Если мы нанесем фактические точки данных вместе с линией регрессии, мы сможем увидеть это более четко:

Диаграмма рассеяния для простой линейной регрессии

Обратите внимание на то, что наблюдения располагаются гораздо плотнее вокруг линии регрессии. В среднем наблюдаемые значения отклоняются от линии регрессии на 2,095 единицы .

Таким образом, несмотря на то, что обе модели регрессии имеют R-квадрат 65,76% , мы знаем, что вторая модель будет давать более точные прогнозы, поскольку она имеет более низкую стандартную ошибку регрессии.

Преимущества использования стандартной ошибки

Стандартную ошибку регрессии (S) часто бывает полезнее знать, чем R-квадрат модели, потому что она дает нам фактические единицы измерения. Если мы заинтересованы в использовании регрессионной модели для получения прогнозов, S может очень легко сказать нам, достаточно ли точна модель для прогнозирования.

Например, предположим, что мы хотим создать 95-процентный интервал прогнозирования, в котором мы можем прогнозировать результаты экзаменов с точностью до 6 баллов от фактической оценки.

Наша первая модель имеет R-квадрат 65,76%, но это ничего не говорит нам о том, насколько точным будет наш интервал прогнозирования. К счастью, мы также знаем, что у первой модели показатель S равен 4,19. Это означает, что 95-процентный интервал прогнозирования будет иметь ширину примерно 2*4,19 = +/- 8,38 единиц, что слишком велико для нашего интервала прогнозирования.

Наша вторая модель также имеет R-квадрат 65,76%, но опять же это ничего не говорит нам о том, насколько точным будет наш интервал прогнозирования. Однако мы знаем, что вторая модель имеет S 2,095. Это означает, что 95-процентный интервал прогнозирования будет иметь ширину примерно 2*2,095= +/- 4,19 единиц, что меньше 6 и, следовательно, будет достаточно точным для использования для создания интервалов прогнозирования.

Дальнейшее чтение

Введение в простую линейную регрессию
Что такое хорошее значение R-квадрата?


Whenever we fit a linear regression model, the model takes on the following form:

Y = β0 + β1X + … + βiX +ϵ

where ϵ is an error term that is independent of X.

No matter how well X can be used to predict the values of Y, there will always be some random error in the model.

One way to measure the dispersion of this random error is by using the standard error of the regression model, which is a way to measure the standard deviation of the residuals ϵ.

This tutorial provides a step-by-step example of how to calculate the standard error of a regression model in Excel.

Step 1: Create the Data

For this example, we’ll create a dataset that contains the following variables for 12 different students:

  • Exam Score
  • Hours Spent Studying
  • Current Grade

Step 2: Fit the Regression Model

Next, we’ll fit a multiple linear regression model using Exam Score as the response variable and Study Hours and Current Grade as the predictor variables.

To do so, click the Data tab along the top ribbon and then click Data Analysis:

If you don’t see this option available, you need to first load the Data Analysis ToolPak.

In the window that pops up, select Regression. In the new window that appears, fill in the following information:

Once you click OK, the output of the regression model will appear:

Step 3: Interpret the Standard Error of Regression

The standard error of the regression model is the number next to Standard Error:

Standard error of regression in Excel

The standard error of this particular regression model turns out to be 2.790029.

This number represents the average distance between the actual exam scores and the exam scores predicted by the model.

Note that some of the exam scores will be further than 2.79 units away from the predicted score while some will be closer. But, on average, the distance between the actual exam scores and the predicted scores is 2.790029.

Also note that a smaller standard error of regression indicates that a regression model fits a dataset more closely.

Thus, if we fit a new regression model to the dataset and ended up with a standard error of, say, 4.53, this new model would be worse at predicting exam scores than the previous model.

Additional Resources

Another common way to measure the precision of a regression model is to use R-squared. Check out this article for a nice explanation of the benefits of using the standard error of the regression to measure precision compared to R-squared.

Возможно, вам также будет интересно:

  • Как вычислить ошибку средней арифметической пример
  • Как вычислить ошибку выборки
  • Как вычислить ошибки букмекера
  • Как вычислить относительную ошибку опыта
  • Как вычислить абсолютную ошибку среднего значения

  • Понравилась статья? Поделить с друзьями:
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии