Частотные преобразователи относятся к сложной промышленной электронике достаточно дорогой и в тоже время широко распространенной по всему миру. На сегодняшний день трудно себе даже представить какое-либо производство, на котором бы не работало данное промышленное оборудование.
К сожалению, в процессе эксплуатации выходит из строя даже самое надежное промышленное оборудование. В данной статье мы разберем частотный преобразователь KEB, точнее коды ошибок частотного преобразователя KEB COMBIVERT F5 серии BASIC, COMPACT и GENERAL, с полной расшифровкой. Частотники в наше время нашли широкое применения в абсолютно всех сферах промышленности управляя как мини моторами в оргтехнике, так и гигантскими двигателями в горнодобывающей промышленности.
Для простоты общения со столь сложной электроникой все частотные преобразователи оснащены небольшими дисплеями с помощью которых выводятся информационные сообщения с кодами ошибок, расшифровав которые можно сразу же узнать причину ее возникновения. Если учесть распространенность данной промышленной электроники, то появляется острая нужда в расшифровке кодов ошибок частотных преобразователей.
Данная статья поможет даст вам возможность не совершать ошибок, и в добавок поможет самостоятельно определять и устранять ту или иную причину повлекшую за собой аварийную остановку частотного преобразователя KEB.
В частотниках KEB COMBIVERT все сообщения, связанные с ошибками, отображаются вместе с буквой “E” после которой указывается сама ошибка на дисплее преобразователя. При сообщении об ошибке частотный преобразователь KEB автоматически отключает модуляцию. Повторный запуск частотника возможен лишь после сброса ошибки.
Сбой в работе преобразователя обозначается буквой “А” соответственно после которой отобразится соответствующие сообщение о сбое оборудования. Сбой в работе частотного преобразователя может быть вызван различными причинами.
Сообщения о состоянии привода выводятся без дополнительных символов, данные сообщения показывают текущее рабочее состояние частотника такое как (непрерывное вращение вперед, удержание в нуле и т.п.).
Сообщение о состоянии частотного преобразователя KEB COMBIVERT F5.
Код сообщения |
Состояние преобразователя |
Значение |
Пояснение |
bbL |
Блокировка силового модуля. |
76 |
|
bon |
Тормоз включен. |
85 |
|
boFF |
Тормоз отключен. |
86 |
|
Cdd |
Расчет привода. |
82 |
|
dcb |
Торможение постоянным током (ТПТ) |
75 |
|
dLS |
Низкая скорость low speed / ТПТ |
77 |
|
FAcc |
Ускорение в направлении «вперед». |
64 |
|
Fcon |
Вращение с постоянной скоростью «вперед». |
66 |
|
FdEc |
Замедление в направлении «вперед». |
65 |
|
HCL |
Аппаратное ограничение тока. |
80 |
|
LAS |
Останов рампы ускорения (LA stop) |
72 |
|
IdAtA |
Неверные данные. |
— |
|
LdS |
LD останов. |
73 |
|
LS |
low speed |
70 |
|
nO_PU |
Силовая часть не готова. |
13 |
|
noP |
Холостая операция. |
0 |
|
PA |
Позиционирование активно. |
122 |
|
PLS |
low speed / Функция потери питания. |
84 |
|
PnA |
Позиция не может быть достигнута. |
123 |
|
POFF |
Функция защиты от потери питания. |
78 |
|
POSI |
Позиционирование. |
83 |
|
rAcc |
Ускорение в направлении «назад». |
67 |
|
rcon |
Вращение «назад» с постоянной скоростью. |
69 |
|
rdEc |
Замедление в направлении «назад». |
68 |
|
rFP |
К позиционированию готов. |
121 |
|
SLL |
stall |
71 |
|
SrA |
Режим референцирования активен. |
81 |
|
SSF |
Поиск скорости. |
74 |
|
StOP |
Быстрый останов. |
79 |
|
Сообщение с кодами ошибок частотного преобразователя KEB COMBIVERT F5 и их расшифровка.
Код сообщения |
Ошибка преобразователя |
Значение |
Пояснение |
E.br |
Ошибка тормоза. |
56 |
|
E.buS |
Ошибка шины. |
18 |
|
E.Cdd |
Ошибка расчета данных двигателя. |
60 |
|
E.co1 |
Ошибка переполнения счетчика 1. |
54 |
|
E.co2 |
Ошибка переполнения счетчика 2. |
55 |
|
E.dOH |
Ошибка внешнего перегрева. |
9 |
|
E.dri |
Ошибка реле привода. |
51 |
|
E.EEP |
Ошибка EEPROM ошибка времени. |
21 |
|
E.EF |
Внешняя ошибка. |
31 |
|
E.EnC |
Ошибка энкодера. |
32 |
|
E.Hyb |
Ошибка интерфейса энкодера. |
52 |
|
E.HybC |
Ошибка смены интерфейса энкодера. |
59 |
|
E.iEd |
Ошибка детектор. |
53 |
|
E.InI |
Ошибка инициализации MFC. |
57 |
|
E.LSF |
Ошибка в шунте нагрузки. |
15 |
|
E.ndOH |
нет Ошибки перегрева двигателя. |
11 |
|
E.nOH |
нет Ошибки перегрева силового модуля. |
36 |
|
E.nOHI |
нет Ошибки внутреннего перегрева. |
7 |
|
E.nOL |
нет Ошибки перегрузки. |
17 |
|
E.nOL2 |
нет Ошибки перегрузки 2. |
20 |
|
E. OC |
Перегрузка по току. |
4 |
|
E. OH |
Ошибка перегрева силового модуля. |
8 |
|
E.OH2 |
Ошибка защиты двигателя. |
30 |
|
E.OHI |
Ошибка внутреннего перегрева. |
6 |
|
E. OL |
Ошибка перегрузки. |
16 |
|
|
|||
E.OL2 |
Ошибка перегрузки 2. |
19 |
|
E. OP |
Ошибка перенапряжения. |
1 |
|
|
|||
E.OS |
Ошибка превышения скорости. |
58 |
|
E.PFC |
Ошибка коррекции коэффициента Мощности. |
33 |
|
E.PrF |
Ошибка блокировка вращения вперед. |
46 |
|
E.Prr |
Ошибка блокировка вращения назад. |
47 |
|
E. Pu |
Ошибка силового модуля. |
12 |
|
E.Puci |
Ошибка кода силового модуля. |
49 |
|
E.Puch |
Ошибка: смена силового модуля. |
50 |
|
E.PUCO |
Ошибка связи с силовым модулем. |
22 |
|
E.PUIN |
Ошибка силового модуля. |
14 |
|
E.SbuS |
Ошибка синхронизации шины. |
23 |
. |
E.SEt |
Ошибка набора параметров. |
39 |
|
E.SLF |
Ошибка правого программирования конечного выключения. |
44 |
|
E.SLr |
Ошибка левого программирования конечного выключения. |
45 |
|
E.UP |
Ошибка — пониженное напряжение. |
2 |
|
E.UPh |
Ошибка. |
3 |
|
Предупреждающие сообщения частотного преобразователя KEB COMBIVERT F5 и их расшифровка.
Код сообщения |
Предупреждение преобразователя |
Значение |
Пояснение |
A.buS |
ABN.STOP шина. |
93 |
|
A.dOH |
ABN.STOP перегрев двигателя. |
96 |
|
A. EF |
ABN.STOP внешняя ошибка. |
90 |
|
A.ndOH |
нет A. перегрева двигателя. |
91 |
|
A.nOH |
нет A. перегрева силового модуля. |
88 |
|
A.nOHI |
нет A.STOP внутреннего перегрева. |
92 |
|
A.nOL |
нет ABN.STOP перегрузка. |
98 |
|
A.nOL2 |
нет ABN.STOP перегрузка 2. |
101 |
|
A. OH |
A.STOP перегрев силового модуля. |
89 |
|
A.OH2 |
ABN.STOP защита двигателя. |
97 |
|
A.OHI |
ABN.STOP внутренний перегрев ПЧ. |
87 |
|
A. OL |
ABN.STOP перегрузка. |
99 |
|
A.OL2 |
ABN.STOP перегрузка 2. |
100 |
|
A.PrF |
ABN.STOP защита при вращ. вперед. |
94 |
|
A.Prr |
ABN.STOP защита при вращ. назад. |
95 |
|
A.SbuS |
ABN. Синхронизация шины. |
103 |
|
A.SEt |
ABN.STOP набор параметров. |
102 |
|
A.SLF |
ABN.Правый программный конечный выкл. |
104 |
|
A.SLr |
ABN.Левый програм. конечный выкл. |
105 |
|
Распиновка клемм резольвера и энкодера для разъемов частотного преобразователя KEB.
Скачать руководство по эксплуатации частотных преобразователей KEB COMBIVERT F5 серии BASIC, COMPACT и GENERAL
Сброс ошибок и Ремонт частотников в сервисном центре
Компания «Кернел» производит ремонт промышленной электроники и оборудования с 2002 года. За это время мы накопили колоссальный опыт в том числе опыт в ремонте частотных преобразователей. Ремонт подобной промышленной электроники ответственное и сложное занятие, требующие максимальной отдачи, профессионализма и максимально полной материальной базе.
Специалисты нашего сервисного центра уделяют максимальное внимание к качеству исполнения ремонта, программирования и настройке промышленного преобразователя частоты, не зависимо от производителя данного промышленного оборудования. Именно поэтому мы смело даем гарантию на все выполненные работы шесть месяцев.
Ремонт частотного преобразователя KEB производится исключительно с использованием оригинальных запасных частей, на компонентном уровне с применением высокотехнологичного оборудования, квалифицированным персоналом с инженерным образованием.
Если на вашем производстве появились проблемы с частотным преобразователем, которые вы не можете решить самостоятельно, мы всегда рады вам помочь. Обращайтесь в сервисный центр «Кернел». Специалисты нашей компании в минимальные сроки проведут глубокую диагностику и последующий ремонт частотного преобразователя. Оставьте заказ на ремонт оборудования используя форму на сайте, либо свяжетесь с нашими менеджерами, сделать это очень просто.
Как с нами связаться
У вас остались вопросы, связанные с ремонтом, сбросом ошибок, программированием и настройкой частотных преобразователей? Задайте их нашим менеджерам. Связаться с ними можно несколькими способами:
- Заказав обратный звонок (кнопка в правом нижнем углу сайта)
- Посредством чата (кнопка расположена с левой стороны сайта)
- Позвонив по номеру телефона: +7(8482) 79-78-54; +7(917) 121-53-01
- Написав на электронную почту: 89171215301@mail.ru
Далеко не полный список производителей промышленной электроники и оборудования, ремонтируемой в нашей компании.
Parameter Description — Encoder Set Up
70
This parameter displays the type of encoder feedback installed in
the drive. It is also used to confirm a change in the encoder
feedback card when a different card is installed or a change of
motor encoder when an absolute encoder is used.
Normally it is not necessary to make any adjustments to this
parameter and the value display is for informational purposes
only. However if the feedback card in the drive has been changed
or the absolute encoder has been disconnected or changed use
the following steps to clear the resulting error message.
Feedback Card Installation
On installation of a new feedback card the drive will display
E.ENCC. To acknowledge the new encoder card go to this
parameter press function and one of the codes below will be
displayed and press enter. This confirms the installation of the
new card.
Display Channel 1 ( X3A)
noInt
No feedback card installed
SSI
5V TTL incremental
rESoL
Resolver
HIPEr
Hiperface
Inc24
15-24V HTL incremental
IncIE
5V TTL incremental
SinCo
Sine Cosine
I24PE
15-24V HTL incremental
EndAt
EnDat
Absolution encoder exchange or re-connection
If an absolute encoder (Hiperface, EnDat, SinCos, SSI) is disconnected
or reconnected it could indicate that the absolute position of the
encoder has changed. Therefore it may be necessary to re-aline the
encoder to the motor. If the drive senses that the encoder has been
disconnected or exchanged it will always trigger the error E.ENCC. To
acknowledge the change and clear the error, select this parameter, it
will show one of the codes listed above, then press enter. The error
should be cleared and normal operation can continue.
If the encoder was physically removed from the motor and
mounted again, it will be necessary to realign the encoder to the
motor. For further assistance see parameter LF.77 and section
5.11.1.
Channel 2 (X3B)
Synchronous Serial Interface,
absolute multi turn position encoder
5V TTL incremental output
5V TTL incremental output
5V TTL incremental output
5V TTL incremental output
5V TTL incremental output
5V TTL incremental output
5V TTL incremental output
- Печать
Страницы: 1 [2] 3 4 … 16 Вниз
Тема: KEB лифт F5 (Прочитано 59703 раз)
0 Пользователей и 1 Гость просматривают эту тему.
Какая-то засада нарисовалась. Частотник КЕВ F5-Lift. Пульт подключен через удлинитель. Станция ШК6272. При подключении в станции нулевого защитного провода РЕ на частотнике вылетает переходной блок, через который к частотнику подключается выносной пульт.
Пока в станции не был подключен РЕ, все было нормально, частотник запрограммировался. При подключении РЕ, на пульте высветились все восьмерки. Отключил РЕ, подключил пульт напрямую к частотнику – пульт работает.
На сайте КЕВ нашел письмо, в котором пишется о возможно неправильном расключении разъема в кабеле энкодера. Этот кабель пока не проверял. Но там пишут, что вылететь может энкодер или плата сопряжения энкодера с частотником, про этот блок не упоминают. Кто-нибудь сталкивался с подобным? Экспериментировать больше не хочется, два блока уже вылетело.
Еще не могу найти информации по микросхемам в этом блоке:
Записан
спасибо
Производитель Texas Instruments, полная маркировка SN75LBC179A
SN75LB179A Datasheet (PDF)
Информация о маркировке (PACKAGING INFORMATION) на 11-й странице документа.
Записан
Кажись, вычислил засаду. Ситуация следующая: в обоих блоках вылетела одна и та же микросхема 7LB179, по восьмой ноге (вход приемника) коротыш на общий питания. По схеме эта нога соединена с выходом передатчика МАХ488 (пятая нога), расположенном в разъеме, втыкаемом в выносной пульт.
Контактная площадка в цепи пятой ноги МАХ488 расположена на самом краю печатной платы и этим краем печатная плата касается крепежной втулки в корпусе разъема. Стоит на разъем слегка нажать и восьмая нога 7LB179 оказывается соединенной с корпусом разъема. Если корпус разъема соединен с защитным РЕ, микросхеме наступает кирдык.
Предполагаю, что с такой конструкцией подобный инцидент будет не последним.
Записан
спасибо
Добрый вечер. Не могу запустить KEB. При адаптации пишет 1 OPE. В описании этого нет.
Записан
это вроде не завершенного процесса… Попробуй станцию переключить (выключить -включить).
Записан
Скорее сообщение о недопостимости операции. Тут не
(выключить -включить).
тут скорее просто выключить плату и попробовать протестировать с отключеной платой.
Записан
Сообщение I_OPE возникает при вводе параметров в защищенные ячейки памяти преобразователя, когда на входе безопасности (клемма 16) присутствует сигнал разрешения работы. Как выше написал Наладчик, говорит о недопустимости операции.
Записан
При попытке автотюнинга — идентификации двигателя
(Прописываем параметры мотора и энкодера, LD.14 ставим в 1, нажимаем Enter,
зажимаем контакторы KM2 и KM5) вылетает ошибка E.Hyb (ранее вылетала E.encC).
Не тот энкодер или просто с ним нет связи? Вариант 1 при подключении к станции ШК6272. Лебёдка WSG 1.3.
Кто-нибудь может описать алгоритм автотюнинга поподробнее?
Обязательно-ли делать обучение системной позиции (LC.18 —> 4, LC.19 —> 1)?
Или кто-то запускал вышеописанные комплекты?
Записан
Наладчик по лифтам, электромеханик с удостоверением и 3-ей группой электробезопасности.
Для начала необходимо проверить кабель энкодера, артикульный номер кабеля укажите. Обучение системной позиции делать обязательно.
Записан
спасибо
В документе BA_WSGS1_E11.pdf указано, что может быть два вида энкодеров на лебёдке WSG-S1.3
1) SSI oder EnDat (ERN 413, энкодер Хейденхан)
2) 1 sine and cosine signal with 1 per/rotation (ERN 487, энкодер тоже от Хейденхан)
К счастью, одинаковых по числу импульсов и вольтажу.
Кто-нибудь сталкивался с этими двумя вариантами?
Артикульный номер пока не скажу — объект в 16 км. от меня.
когда на входе безопасности (клемма 16) присутствует сигнал разрешения работы.
Т.е. надо делать тюнинг при несобранной ЦБ?
Фото шкафа ШК6272.
« Последнее редактирование: Май 14, 2015, 17:57:58 от liftgeneer »
Записан
Наладчик по лифтам, электромеханик с удостоверением и 3-ей группой электробезопасности.
SinCos энкодер ERN487 выдает синусоиды, а не меандр. В остальном обычный инкрементальный энкодер.
EnDat (ECN 413 или ECN 1313) выдает точно такие же синусоиды (если не частотник не пользует дополнительные каналы, то может работать с ним как ERN — формат ничем не отличается) плюс данные по цифровому каналу. Это абсолютный энкодер и по цифровому каналу может передавать данные о точном положении вала в любой момент времени.
Отличать или по маркировке или по концам (если кабель не перепутали, но это достаточно тяжело — разъем у энкодера разный и впридачу сам разъем нестандартный — хрен найдешь такой).
Если есть проводники R+, R- значит точно ERN.
Если есть CLOCK и DATA (тоже плюс и минус) значит точно EnDat — не путать с сигналами C+/C- и D+/D- которые есть у ERN — назначение их совсем разное.
Скорее всего стоит все таки EnDat…
Записан
Заменили кабель энкодера, автотюнинг запустился и благополучно был завершён.
Движение было в противоположную сторону, путём изменения
LC.13 0 -> 1 -> 17 добился правильного направления.
LC.16 меняется от 16000 до 60000.
Лифт движется из МП, прокинув подвесник, убрав одну из перемычек, добились движения из «ревизии».
Вернули старый кабель энкодера — работает (ранее, видимо, был неконтакт).
Жаль,что на пульте частотника нет индикации текущих значений частоты, напряжений, величины тока.
Монтаж лифта продолжается.
Записан
Наладчик по лифтам, электромеханик с удостоверением и 3-ей группой электробезопасности.
Жаль,что на пульте частотника нет индикации текущих значений частоты, напряжений, величины тока.
Всё индицируеться в соответствующих параметрах.
Записан
Ребята, подскажите в чём засада? Пытаемся запустить лифт в монтажную ревизию, забили параметры по инструкции быстрого ввода в эксплуатацию КЕВ f5 lift. с синхронным двигателем. Провели идентификацию двигателя. Всё прошло успешно. На станции ШК-6272 тоже всё в норме. При пуске включаются контакторы главного привода а реле к7и контактор тормоза КМ4 не включаются. Станция пишет «нет снятия тормоза». Провода расключены правилно, обрывов нет. С уважением.
Записан
Лифт отработал 3 года ШУЛМ двигатель асинхронный.При пуске включается контактор главного привода а реле KV19 не включаются. Пробовали Ld.14 и Ld15. местами менять с соответствующей заменой проводов в разъёме. Может включится, а может и нет. Когда не включается реле тормоза частотник пишет ошибка E. br. Кидал провод с разъёма частотника напрямую к плате с реле KV19-909 и 132 на колодку в другие места. Несколько раз проедет нормально,потом опять вылетит. Фишкой реле принудительно включал, тормоз отрабатывает нормально. Идеи для танцев с бубном закончились. Все провода протянуты и проверенны.
Записан
Новости филологии. Поднимаясь пешком на шестнадцатый этаж, грузчик Николай подобрал сто синонимов к словосочетанию «плохие лифтеры».
- Печать
Страницы: 1 [2] 3 4 … 16 Вверх
- Manuals
- Brands
- KEB Manuals
- DC Drives
- COMBIVERT F5
- Instruction manual
Lift
-
Contents
-
Table of Contents
-
Bookmarks
Quick Links
LIFT TECHNOLOGY
GB
Instruction Manual
COMBIVERT F5-Lift
Version 2.2
Mat.No.
Rev.
00F5LEB-K220
1D
Related Manuals for KEB Combivert F5
Summary of Contents for KEB Combivert F5
- Page 1
LIFT TECHNOLOGY Instruction Manual COMBIVERT F5-Lift Version 2.2 Mat.No. Rev. 00F5LEB-K220… -
Page 3: Table Of Contents
Table of Contents 1. Introduction ……………………4 Preface …………………………. 4 Product description …………………….. 4 Safety and Operating Instructions ………………..5 2. Overview of control connections ……………….6 Housing sizes D…E …………………….. 6 Housing sizes G…U …………………….. 6 Motor encoder connection X3A ………………….. 7 2.3.1 Incremental encoder interface ………………….
-
Page 4: Introduction
Help Product description This instruction manual describes the frequency inverter series KEB COMBIVERT F5 for lift drives. This series convinces through the special adaption of the operation to the requirements of lift drives. The lift functions are available only in connection with the lift operator (part number 00.F5.060-200C software version 2.2).
-
Page 5: Safety And Operating Instructions
Important, absolutely read Safety and Operating Instructions Safety and Operating Instructions for drive converters (in conformity with the Low-Voltage Directive 2006/95/EG) 1. General portation or handling. No contact shall be made with In operation, drive converters, depending on their de- electronic components and contacts.
-
Page 6: Overview Of Control Connections
Description of the Unit Overview of Control Connections Housing sizes D…E Lift operator (00.F5.060-200C) HSP5 interface RS232/485 interface Control terminal strip Lift shaft encoding Motor encoder Housing size G…U Lift operator (00.F5.060-200C) HSP5 interface RS232/485 interface Lift shaft encoding Motor encoder Control terminal strip Observe maximum width of the connectors for X3A and X3B !
-
Page 7: Motor Encoder Connection X3A
Description of the Unit Motor encoder connection X3A The connection of the motor encoder is done on socket X3A. Which of the encoders can be connected depends on the installed encoder interface and is displayed in LC.11. All encoder connectors may be connected / discon- nected only at switched off frequency inverter and switched off supply voltage.
-
Page 8: Hiperface Encoder Interface
Description of the Unit 2.3.4 Hiperface encoder interface Name Description REF_COS Signal offset to COS REF_SIN Signal offset to SIN COS+ Incremental signal COS for counter and direction detection SIN+ Incremental signal SIN for counter and direction detection +7,5 V Power supply for encoder Reference potential for supply voltage Data-…
-
Page 9: Htl Encoder Interface Without Differential Signals
Description of the Unit 2.3.8 HTL encoder interface without difference signals Name Description NO contact Error relay NO contact NC contact Error relay NC contact Switching Error relay switching contact contact HTL A+ HTL input track A+ (parallel X3A.7) HTL B+ HTL input track B+ (parallel X3A.2) +24 V Voltage output 20..30 V, power supply for the encoders…
-
Page 10: Wiring Examples / Flow Charts
Description of the Unit 2.5 Wiring examples / flow charts 2.5.1 Connection F5-Lift for binary-coded setpoint selection (factory setting) Braking resistor LHF-filter Bridge Temperature Motor-PTC Motor encoder switch Impulse output/-input or SSI-input Control release Main contactors X2A.16 X2A.24 UPS-operation X2A.17 X2A.25 Direction of travel for- +24 V X2A.14 X2A.26…
- Page 11
Description of the Unit Flow chart at factory setting Setpoint Bit 1 (X2A.11) Setpoint Bit 0 (X2A.10) Setpoint Bit 2 (X2A.12) forward (X2A.14) Start (X2A.16) HS (X2A.24…26) Brake (X2A.27…29) t1 t3 t6 t7 The bit sample for the setpoint values and the direction of travel is set. Immediately after that the inverter sets the output for the main contactors. -
Page 12: Connection F5-Lift Input-Coded Setpoint Selection ((Lb.05=2, Lb.12=0, Lb.13=1)
Description of the Unit 2.5.2 Connection F5-Lift for input-coded setpoint selection (Lb.05=2, Lb.12=0, Lb.13=1) Braking resistor LHF-filter Bridge Temperature Motor-PTC Motor encoder switch Impulse output/-input or SSI-input Control release Main contactors X2A.16 X2A.24 Releveling X2A.17 X2A.25 Speed Direction of travel for- +24 V X2A.14 X2A.26…
- Page 13
Description of the Unit Flow chart at input coding Leveling speed (X2A.10) rated speed (X2A.11) Inspection speed (X2A.12) forward (X2A.14) Start (X2A.16) HS (X2A.24…26) Brake (X2A.27…29) t1 t3 t6 t7 VN rated speed and direction of travel are set. Immediately after that the inverter sets the output for the main contactors. -
Page 14: Connection F5-Lift For Ogive Travel With Correction Input (Lb.05=1, Lb.12=9)
Description of the Unit 2.5.3 Connection F5-Lift for ogive travel with correction input (Lb.05=1, Lb.12=9) Braking resistor LHF-filter Bridge Temperature Motor-PTC Motor encoder switch Impulse output/-input or SSI-input Control release Main contactors X2A.16 X2A.24 Correction input X2A.17 X2A.25 Direction of travel for- +24 V X2A.14 X2A.26…
- Page 15
Description of the Unit Flow chart for digital direct approach, peak arch with correction Setpoint Bit0 (X2A.10) Setpoint Bit1 (X2A.11) set setpoint value LF.21 to „0“ Setpoint Bit2 X2A.12) Correction (X2A.17) Start (X2A.16) Reverse (X2A.15) Ready for operation signal (X2A.18) Brake (X2A.27…29) Main contactors (X2A.24…26) GB — 15… -
Page 16: Connection F5-Lift For Ups-Run
Description of the Unit 2.5.4 Connection F5-Lift for UPS operation Lift control Phase monitoring F5-Lift 230V AC 1ph We recommend the use of chokes to avoid current peaks. Without chokes the UPS may be bigger or go to the limit. Alternatively a single-phase transformer 230 V AC can be used at 380 V AC.
- Page 17
Description of the Unit Connection F5-Lift for UPS operation (Lb.05=1, Lb.12=5) Braking resistor LHF-filter Encoder Motor-PTC Control release Main contactor X2A.16 X2A.24 UPS-operation X2A.17 X2A.25 Direction of travel +24 V X2A.14 X2A.26 forward Brake Direction of travel X2A.15 X2A.27 control reverse Setpoint Bit0 X2A.10… - Page 18
Description of the Unit Flow chart for UPS operation (LF.27) forward (X2A.14) Control release (X2A.16) UPS operation (X2A.17) Leveling speed (X2A.11) Brake (X2A.27/28/29) HS (X2A.24/25/26) t6 t7 The travel direction and the set speeds VU and VL must be set. After a debounce timer run out the main contactors are controlled (powerless switching) . -
Page 19: Control Terminal Strip X2A
Description of the Unit Control terminal strip X2A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 • Tightening torque 0,22…0,25 Nm •…
-
Page 20: Lift-Operator
Lift-Operator The F5-Lift operator is integrated into the FI housing by plug-in and fits into all KEB F5 lift units. Parallel to the bus operation over the RS232/485 interface the operation via integrated display/keyboard as well as a further interface for diagnosis/parameterizing (KEB COMBIVIS) is possible.
-
Page 21: The Operator Panel
Description of the Unit 2.7.3 The operator panel The function key is used to change between parameter value and parameter number. FUNC. SPEED With UP (▲) and DOWN (▼) the parameter number or, in case of changeable parameters, the value is increased/ decreased.
-
Page 22: Parameter Description
Parameter Description Parameter Description Overview of parameter groups The operating menu is devided into following parameter groups : Gruppe Name Function Lift basic Basic setting Lift drive Entry of the motor data Lift encoder Adjustment of motor and shaft encoder Lift Function Lift-specific adjustments Lift Posi…
- Page 23
Parameter Description Display Meaning US_ro User read-only, programming inhibited, parameter can be read-only US_on User on, programming enabled Lb.02 Customer-specific password With this parameter a customer-specific password can be defined. It becomes active at the next switch-on and must then be entered before the programming of LB.01. Input Function 11…65535… - Page 24
Parameter Description Input-coded setpoint selection (Lb.05 = 2) Speed Terminal X2A.10 Terminal X2A.11 Terminal X2A.12 Terminal X2A.13 Terminal X2A.17 VL (LF.21) VN (LF.22) VI (LF.23) V1 (LF.24) VR (LF.20) Analog setpoint setting (Lb.05 = 3 or 4) The analog setpoint setting is done over terminals X2A.1 and X2A.2. The speed is calculated according to fol- lowing formula: value „3“… - Page 25
Parameter Description Lb.10 In-/ Output configuration With this parameter the programming of the digital inputs (Lb.11…13) and the digital outputs (Lb.14…17) can be enabled. The programming is generally inhibited for positioning operation (Lb.01 = 2…4). Input Setting Programming Description inhibited The configuration of the in- and outputs is reset to factory set- ting. - Page 26
Parameter Description Lb.18 Brake resistance value Value range Setting Description 0,5…300,0 Ω 30,0 Ω Input of the actually used brake resistance value. With it the inverter calculates the refed energy and outputs the result in parameter LI.23. It serves as decision support on whether the employment of a feedback unit would be worth it. -
Page 27: Input Of Motor Data
Parameter Description Input of the motor data Display Name Setting range Default setting AG Ld.00 Parameter group drIuE Ld.01 Power rating 0,10…400,00 kW 4,0 kW Ld.02 Rated speed 0,000…4000,000 1450,000 Ld.03 Rated current 0,0…710,0 A 1,0 A Ld.04 Rated frequency 0,0…710,0 Hz 50,0 Hz Ld.05…
- Page 28
Parameter Description Ld.05 Cos phi Value range Setting Description 0,5…1,0 Input of the cos phi of the motor according to motor name plate. Ld.06 Rated voltage Value range Setting Description 120…830 V 400 V Input of the motor rated voltage according to motor name plate. Ld.07 Calibration of winding resistance (only at Lb.03 = A G or A GL) Value range… - Page 29
Parameter Description Ld.11 Maximum torque of inverter Value range Setting Description 0,0…xxxx Nm Based on the peak current of the inverter, the maximum torque that can be supplied by the inverter, is displayed. Ld.12 Maximum torque limitation Value range Setting Description 0,0…xxxx Nm 0,95 •… - Page 30
Parameter Description Adjustment of the speed encoder Display Name Setting range Default setting LC.00 Parameter group LC.01 Selection motor encoder input 0…1 LC.02 Encoder 1 Status LC.03 Encoder alarm mode 0…15 LC.11 Display Interface 1 LC.12 Increments Encoder 1 0…65535 inc 2500 Ink LC.13 Track change and travel direction inverting Encoder 1… -
Page 31: Adjustment Of The Motor Encoder And Shaft Encoder
During read out of the encoder the error „E.Enc1“ is output. KEB identifier undefined. Storage structure of the encoder does not correspond to the KEB definition, thus data cannot be read. By writing on it the encoder is defined. Error „E.Enc1“…
- Page 32
Parameter Description Value Installed encoder interface SSI — SIN/ COS In case of an invalid encoder identifier the error „E.Hyb“ is displayed in Li.01 and the measured value is indicated negated. When changing the encoder interface the error „E.HybC“ is displayed. By writing on this parameter the change is confirmed and the default values for the new interface are loaded. - Page 33
Parameter Description LC.18 System position detection (SPI) Value range Setting Description The function SPI (static pole identification) after control release finds the system position without rotation of the after switching on motor. LC.18 determines when the function be- after direction of rotation re- comes active. - Page 34
Parameter Description LC.24 Operation mode output If one of the encoder channels is used as encoder output, the output increments per revolution can be adapted to the requirements of the control card. Input Setting Description 256 Incr. 1024 Incr. 2048 Incr. 4096 Incr. - Page 35
Parameter Description LC.41 SSI Clock frequency Adjustment of the clock frequency for SSI-encoder. Input Setting Description 156,25 kHz 312,5 kHz LC.42 SSI Data format Input Setting Description Binary-coded Graycode LC.43 SSI Voltage monitoring Input Setting Description GB — 35… -
Page 36: Lift Functions
Parameter Description Lift functions Display Name Setting range Default setting LF.00 Parameter group Funct LF.01 max. speed of system 0,000…15,000 m/s 0,000 m/s LF.02 Traction sheave diameter 0…2000 mm 600 mm LF.03 Gear reduction ratio multiplier 0,00…99,99 1,00/ 30,00 LF.04 Gear reduction ration divisor 0,00…99,99 1,00…
- Page 37
Parameter Description LF.00 Display of current parameter group „Funct“ LF.01 Max. speed of system This parameter limits the speed of the system to the adjusted value. For analog setpoint setting applies 0…±10 V correspond to 0…±LF.01. Value range Setting Description 0,000…15,000 m/s 0,000 m/s LF.02… - Page 38
Parameter Description LF.12 KI Speed controller Value range Setting Description 0…32767 auto Adjustment of the I-amplification of the speed controller reset time. LF.13 KI Speed controller Offset Value range Setting Description 0…32767 auto Serves for an improved load transfer at high-efficient gearboxes. LF.14 KP Current controller Value range… - Page 39
Parameter Description LF.22 VN Nominal speed Value range Setting Description 0,000 m/s…LF.01 0,000 LF.23 VI Inspection speed Value range Setting Description 0,000…0,630 m/s 0,000 m/s • it cannot be accelerated from the inspection speed LF.24 V 1 intermediate speed 1 Value range Setting Description… - Page 40
Parameter Description LF.33 Jerk at begin of deceleration Value range Setting Description 0,10…9,99 m/s³ 1,00 m/s³ LF.34 Deceleration Value range Setting Description 0,10…2,00 m/s² 0,90 m/s² LF.35 Jerk at end of deceleration Value range Setting Description 0,10…9,99 m/s³ 0,70 m/s³ LF.36 Stopping jerk Value range… - Page 41
Parameter Description LF.43 Level overspeed Value range Setting Description 0,000…18,000 m/s auto The displayed value is 110 % of the maximum speed (LF.01). LF.44 Deceleration check level Value range Setting Description 0,000…15,000 m/s auto The displayed value is 96 % of the rated speed LF.22). LF.45 Level „running open doors“… - Page 42
Parameter Description LF.50 Drive OH Delay time If a drive shall still be made despite a hot motor, a deceleration time between warning and triggering the excess temperature error can be adjusted with this parameter. After the adjusted time has expired the inverter switches off the modulation with error E.dOH. - Page 43
Parameter Description LF.60 Indication levelling path Value range Setting Description 0,0…264,0 cm The time of constant drive in crawl speed (VL) is measured and displayed after each run in standardized cm. . LF.61 Deceleration point Deceleration point without optimization with optimization Levelling path optimization V With the levelling distance optimization the levelling path become shorter by the entered value. -
Page 44: Positioning Mode
Parameter Description Positioning mode / ogive run Display Name Setting range Default setting LP.00 Display „POSI“ LP.01 Ogive function 0…2 LP.02 Minimum deceleration distance (calculated) 0,0…6553,5 cm auto LP.03 Deceleration distance (measured) -3276,7…3276,7 cm 0,0 cm LP.04 Correction distance 0,0…6553,5 cm 10,0 cm LP.00 Display of current parameter group „POSI“…
- Page 45
Parameter Description Ogive run with crawl path (DOL= digital ogive with leveling speed) This operating mode is recommended • for all conventional control with levelling switches. • if control run-times lead to large tolerances. • if strong slip develops on the leading sheave. •… - Page 46
Parameter Description Ogive run with direct approach (DODA = digital ogive with direct approach) This operating mode is recommended • if the change-over of the speed inputs takes place precisely and fast (ca. 1 ms) • if the mentioned problems at ogive run with crawl path do not exist. Otherwise it result in non-levelling. The procedure is activated by adjusting the crawl speed LF.21 to 0 m/s. - Page 47
Parameter Description LP.02 Minimum deceleration distance (calculated) Value range Setting Description 0,0…6553,5 cm auto only display LP.03 Deceleration distance (measured) Value range Setting Description -3276,7…3276,7 cm 0,0 cm Distance from deceleration point to levelling signal. LP.04 Correction distance Value range Setting Description 0,0…6553,5 cm… -
Page 48: Information, Indications And Measured Values
Parameter description Information, indications and measured values Display Name Unit Default setting LI.00 Display „InFo“ LI.01 Inverter status LI.03 Set speed LI.04 Actual speed LI.07 Actual car speed LI.08 Floor distance LI.09 Set torque LI.10 Actual torque display LI.11 Apparent current LI.12 Actual load LI.13…
- Page 49
Parameter description LI.00 Display of current parameter group „InFo“ LI.01 Inverter status This parameter shows the current status (e.g. constant run, acceleration counter-clockwise rotation) of the inverter. You find a table of all status and error messages in the annex. LI.03 Set speed Display… - Page 50
Parameter description LI.12 Actual load Display Description 0…200 % LI.13 Peak load Display Description 0…200 % LI.14 Actual DC link voltage Display Description 0…1000 V Display of the current DC link voltage in volt. Typical values are: V-class Normal operation Overvoltage (E.OP) Undervoltage (E.UP) 230 V… - Page 51
Parameter description LI.18 Terminal output status Decimal Output Function value X2A.18 X2A.19 X2A.24…26 Display of the currently set external and internal digital outputs. A certain value is X2A.27…29 given out for each digital output. If several outputs are activated, the sum of the internal A decimal value is displayed. - Page 52
Parameter description LI.26 Minimum deceleration distance V Value range Description 0,0…6553,5 cm Indicates the calculated deceleration distance for V LI.27 Minimum deceleration distance V Value range Description 0,0…6553,5 cm Indicates the calculated deceleration distance for V LI.30 Inverter type Meaning Meaning Inverter size binary-coded, e.g. - Page 53
Parameter description LI.36 Software version Operator Value range Description 0,00…9,99 Display of the software version number of the operator. LI.37 Software date Operator Value range Description 0…65535 Display of the software date of the operator in the format „DD.MM.Y“. LI.38 Software version Interface Value range Description… - Page 54
Parameter description LI.41 Last Error (t-1) LI.42 Last Error (t-2) LI.43 Last Error (t-3) LI.44 Last Error (t-4) LI.45 Last Error (t-5) LI.46 Last Error (t-6) LI.47 Last Error (t-7) LI.48 Last Error (t-8) Value range Description 0000…5FFFh The parameters LI.41…48 show the last eight errors that occurred. The oldest error is in LI.48. - Page 55
Parameter description LI.51 AN1 Display after amplification Value range Description 0…±400 % The parameter shows the value of the analog signal AN1 after running through the characteristic amplification in percent. The value range is limited to ±400 %. LI.52 AN2 Display before amplification Value range Description 0…±100 % The parameter shows the value of the analog signal AN2 before the characteristic amplification in percent. -
Page 56: Adjustment Of Analog Inputs And Outputs
Parameter description Adjustment of analog inputs and outputs Display Name Setting Range Default setting LA.00 Display „AnLog“ LA.01 AN1 setpoint selection 0…2 LA.02 AN1 interference filter 0…4 LA.03 AN1 zero point hysteresis 0…±10 V 0,2 V LA.04 AN1 amplification 0,00…±20,00 1,00 LA.05 AN1 Offset X…
- Page 57
Parameter description LA.03 AN1 zero point hysteresis Value range Setting Description 0…±10 % 0,2 % Through capacitive as well as inductive coupling on the inputs lines or voltage fluctuations of the signal source, the motor connected to the inverter can drift („vibrate“). - Page 58
Parameter description LA.06 AN1 Offset Y Value range Setting Description 0,0…±100,0 % 0,0 % This parameter shifts the input characteristic on the Y-axis. LA.07 AN1 lower limit LA.08 AN1 upper limit Value range Setting Description 0,0…±400,0 LA.07 The parameter serves for the limitation of the analog signal AN1 after the -400,0 amplifier stage. - Page 59
Parameter description LA.13 AN2 Offset X Value range Setting Description 0,0…±100,0 % 0,0 % The parameter shifts the input characteristic on the X-axis. LA.14 AN2 Offset Y Value range Setting Description 0,0…±100,0 % 0,0 % The parameter shifts the input characteristic on the Y-axis. LA.15 AN2 lower limit LA.16… -
Page 60: Adjustment Of Torque Precontrol
Parameter description Adjustment of pretorque function 1) Preparations • Enter motor data • Connect load weighing equipment to X2A.3 and X2A.4 • Switch on the pretorque with Lb.7 =1 • Drive the cabine to the middle of the shaft • Remain at the same position in the shaft when carrying out the measurements •…
- Page 61
Parameter description Example 3: Same system data as in example 2, but the installed motor is rotated by 180°. Empty cabine LI.52 = L1 = -5 % LI.10 = -1080 Nm T1 = -108 % Full cabine LI.52 = L2 = 80 % LI.10 = +1320 Nm T2 = +132 % Gain LA.12 = (-108 %-132 %)/(-5 %-80 %) = 2,82… -
Page 62: Start-Up
Start with the basic settings (Lb-parameter). Store the adjusted data by pressing the „Enter“-key. Start-up of an asynchronous motor without speed encoder with gearbox The following procedure is recommended for the start-up of the COMBIVERT F5 Lift with a gearbox-fitted asyn- chronous motor: Lb.03: Selection of the appropriate motor type (Lb.03= A G/ 0:ASM closed loop geared)
-
Page 63: Start-Up Of An Asynchronous Motor With Speed Encoder And Gearbox
Start-up Start-up of an asynchronous motor with speed encoder and gearbox Lb.03: Selection of the appropriate motor type (Lb.03= AG/ 0: ASM closed loop geared) Lb.05: Select the mode of setpoint setting Ld.01 Ld.06: Enter the motor data according to the name plate. Ld.11: If necessary, limit the maximum torque for normal operation.
-
Page 64: Start-Up Of A Synchronous Motor With Speed Encoder Without Gearbox
Start-up Start-up of a synchronous motor with speed encoder without gearbox Lb.01: Input of password Lb.03: Select the appropriate motor type (Lb.03=S GL/ 3: SSM closed loop gearless) Lb.05: Select the mode of setpoint setting Lb.10: Decide, whether you want to assign other functions to the digital in-/outputs. Lb.18: If you want to know the energy losses on the braking resistor, enter the value of the brake resistor Ld.02 Ld.10: Enter the motor data according to the name plate.
-
Page 65: Error Diagnosis
Error Diagnosis Error Diagnosis At KEB COMBIVERT error messages are always represented with an «E.» and the appropriate error code in the display. Error messages cause the immediate deactivation of the modulation. Restart possible only after reset or autoreset. Malfunctions are represented with an «A.» and the appropriate message. Reactions to malfunctions can vary.
- Page 66
Error Diagnosis Display COMBIVIS Meaning The message is output if as response to a warning signal the quick-stop STOP Quick stop function becomes active. Error Messages Error: can occur in the case of switched on brake control, if the load is below the minimum load level at start up or the absence of an E. - Page 67
Error Diagnosis Display COMBIVIS Meaning No more overload, OL-counter has reached 0%; after the error E.OL a cooling phase must elapse. This message appears upon completion of E.nOL No error overload the cooling phase. The error can be reset now. The inverter must remain switched on during the cooling phase. - Page 68
Error Diagnosis Display COMBIVIS Meaning Error: During the initialization the power circuit could not be recognized E.Puci Error ! Unknown power unit or was identified as invalid. Error: Power circuit identification was changed; with a valid power circuit this error can be reset by writing to SY.3. If the value displayed in SY.3 E.Puch Error ! Power unit changed is written, only the power-circuit dependent parameters are reinitialized. - Page 69
Error Diagnosis Display COMBIVIS Meaning A level between 0 and 100 % of the load counter can be adjusted, when A. OL Warning ! Overload it is exceeded this warning is output. The response to this warning can be programmed. The warning is output when the standstill continuous current is excee- ded (see technical data and overload characteristics). - Page 70
Error Diagnosis GB — 70… -
Page 71: Adjustment Speed Controller Of F5 Lift With «Speed Jump
Adjustment Speed Controller of F5 Lift with «speed jump» 1. Open control release (terminal X2A.16) => frequency inverter in status „noP“ 2. Select closed loop operation => Parameter LF.10 = 2 3. Motor without load 4. Set parameters LF.30, LF.31, LF.32 to maximum values 5.
- Page 72
+39 02 33535311 • fax: +39 02 33500790 net: www.keb.it • mail: kebitalia@keb.it KEB Power Transmission Technology (Shanghai) Co.,Ltd. No. 435 QianPu Road, Songjiang East Industrial Zone, KEB Japan Ltd. CHN-201611 Shanghai, P.R. China 15–16, 2–Chome, Takanawa Minato-ku fon: +86 21 37746688 • fax: +86 21 37746600 J–Tokyo 108-0074…
- Manuals
- Brands
- KEB Manuals
- DC Drives
- COMBIVERT F5
- Instruction manual
Lift
-
Contents
-
Table of Contents
-
Bookmarks
Quick Links
LIFT TECHNOLOGY
GB
Instruction Manual
COMBIVERT F5-Lift
Version 2.2
Mat.No.
Rev.
00F5LEB-K220
1D
Related Manuals for KEB Combivert F5
Summary of Contents for KEB Combivert F5
- Page 1
LIFT TECHNOLOGY Instruction Manual COMBIVERT F5-Lift Version 2.2 Mat.No. Rev. 00F5LEB-K220… -
Page 3: Table Of Contents
Table of Contents 1. Introduction ……………………4 Preface …………………………. 4 Product description …………………….. 4 Safety and Operating Instructions ………………..5 2. Overview of control connections ……………….6 Housing sizes D…E …………………….. 6 Housing sizes G…U …………………….. 6 Motor encoder connection X3A ………………….. 7 2.3.1 Incremental encoder interface ………………….
-
Page 4: Introduction
Help Product description This instruction manual describes the frequency inverter series KEB COMBIVERT F5 for lift drives. This series convinces through the special adaption of the operation to the requirements of lift drives. The lift functions are available only in connection with the lift operator (part number 00.F5.060-200C software version 2.2).
-
Page 5: Safety And Operating Instructions
Important, absolutely read Safety and Operating Instructions Safety and Operating Instructions for drive converters (in conformity with the Low-Voltage Directive 2006/95/EG) 1. General portation or handling. No contact shall be made with In operation, drive converters, depending on their de- electronic components and contacts.
-
Page 6: Overview Of Control Connections
Description of the Unit Overview of Control Connections Housing sizes D…E Lift operator (00.F5.060-200C) HSP5 interface RS232/485 interface Control terminal strip Lift shaft encoding Motor encoder Housing size G…U Lift operator (00.F5.060-200C) HSP5 interface RS232/485 interface Lift shaft encoding Motor encoder Control terminal strip Observe maximum width of the connectors for X3A and X3B !
-
Page 7: Motor Encoder Connection X3A
Description of the Unit Motor encoder connection X3A The connection of the motor encoder is done on socket X3A. Which of the encoders can be connected depends on the installed encoder interface and is displayed in LC.11. All encoder connectors may be connected / discon- nected only at switched off frequency inverter and switched off supply voltage.
-
Page 8: Hiperface Encoder Interface
Description of the Unit 2.3.4 Hiperface encoder interface Name Description REF_COS Signal offset to COS REF_SIN Signal offset to SIN COS+ Incremental signal COS for counter and direction detection SIN+ Incremental signal SIN for counter and direction detection +7,5 V Power supply for encoder Reference potential for supply voltage Data-…
-
Page 9: Htl Encoder Interface Without Differential Signals
Description of the Unit 2.3.8 HTL encoder interface without difference signals Name Description NO contact Error relay NO contact NC contact Error relay NC contact Switching Error relay switching contact contact HTL A+ HTL input track A+ (parallel X3A.7) HTL B+ HTL input track B+ (parallel X3A.2) +24 V Voltage output 20..30 V, power supply for the encoders…
-
Page 10: Wiring Examples / Flow Charts
Description of the Unit 2.5 Wiring examples / flow charts 2.5.1 Connection F5-Lift for binary-coded setpoint selection (factory setting) Braking resistor LHF-filter Bridge Temperature Motor-PTC Motor encoder switch Impulse output/-input or SSI-input Control release Main contactors X2A.16 X2A.24 UPS-operation X2A.17 X2A.25 Direction of travel for- +24 V X2A.14 X2A.26…
- Page 11
Description of the Unit Flow chart at factory setting Setpoint Bit 1 (X2A.11) Setpoint Bit 0 (X2A.10) Setpoint Bit 2 (X2A.12) forward (X2A.14) Start (X2A.16) HS (X2A.24…26) Brake (X2A.27…29) t1 t3 t6 t7 The bit sample for the setpoint values and the direction of travel is set. Immediately after that the inverter sets the output for the main contactors. -
Page 12: Connection F5-Lift Input-Coded Setpoint Selection ((Lb.05=2, Lb.12=0, Lb.13=1)
Description of the Unit 2.5.2 Connection F5-Lift for input-coded setpoint selection (Lb.05=2, Lb.12=0, Lb.13=1) Braking resistor LHF-filter Bridge Temperature Motor-PTC Motor encoder switch Impulse output/-input or SSI-input Control release Main contactors X2A.16 X2A.24 Releveling X2A.17 X2A.25 Speed Direction of travel for- +24 V X2A.14 X2A.26…
- Page 13
Description of the Unit Flow chart at input coding Leveling speed (X2A.10) rated speed (X2A.11) Inspection speed (X2A.12) forward (X2A.14) Start (X2A.16) HS (X2A.24…26) Brake (X2A.27…29) t1 t3 t6 t7 VN rated speed and direction of travel are set. Immediately after that the inverter sets the output for the main contactors. -
Page 14: Connection F5-Lift For Ogive Travel With Correction Input (Lb.05=1, Lb.12=9)
Description of the Unit 2.5.3 Connection F5-Lift for ogive travel with correction input (Lb.05=1, Lb.12=9) Braking resistor LHF-filter Bridge Temperature Motor-PTC Motor encoder switch Impulse output/-input or SSI-input Control release Main contactors X2A.16 X2A.24 Correction input X2A.17 X2A.25 Direction of travel for- +24 V X2A.14 X2A.26…
- Page 15
Description of the Unit Flow chart for digital direct approach, peak arch with correction Setpoint Bit0 (X2A.10) Setpoint Bit1 (X2A.11) set setpoint value LF.21 to „0“ Setpoint Bit2 X2A.12) Correction (X2A.17) Start (X2A.16) Reverse (X2A.15) Ready for operation signal (X2A.18) Brake (X2A.27…29) Main contactors (X2A.24…26) GB — 15… -
Page 16: Connection F5-Lift For Ups-Run
Description of the Unit 2.5.4 Connection F5-Lift for UPS operation Lift control Phase monitoring F5-Lift 230V AC 1ph We recommend the use of chokes to avoid current peaks. Without chokes the UPS may be bigger or go to the limit. Alternatively a single-phase transformer 230 V AC can be used at 380 V AC.
- Page 17
Description of the Unit Connection F5-Lift for UPS operation (Lb.05=1, Lb.12=5) Braking resistor LHF-filter Encoder Motor-PTC Control release Main contactor X2A.16 X2A.24 UPS-operation X2A.17 X2A.25 Direction of travel +24 V X2A.14 X2A.26 forward Brake Direction of travel X2A.15 X2A.27 control reverse Setpoint Bit0 X2A.10… - Page 18
Description of the Unit Flow chart for UPS operation (LF.27) forward (X2A.14) Control release (X2A.16) UPS operation (X2A.17) Leveling speed (X2A.11) Brake (X2A.27/28/29) HS (X2A.24/25/26) t6 t7 The travel direction and the set speeds VU and VL must be set. After a debounce timer run out the main contactors are controlled (powerless switching) . -
Page 19: Control Terminal Strip X2A
Description of the Unit Control terminal strip X2A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 • Tightening torque 0,22…0,25 Nm •…
-
Page 20: Lift-Operator
Lift-Operator The F5-Lift operator is integrated into the FI housing by plug-in and fits into all KEB F5 lift units. Parallel to the bus operation over the RS232/485 interface the operation via integrated display/keyboard as well as a further interface for diagnosis/parameterizing (KEB COMBIVIS) is possible.
-
Page 21: The Operator Panel
Description of the Unit 2.7.3 The operator panel The function key is used to change between parameter value and parameter number. FUNC. SPEED With UP (▲) and DOWN (▼) the parameter number or, in case of changeable parameters, the value is increased/ decreased.
-
Page 22: Parameter Description
Parameter Description Parameter Description Overview of parameter groups The operating menu is devided into following parameter groups : Gruppe Name Function Lift basic Basic setting Lift drive Entry of the motor data Lift encoder Adjustment of motor and shaft encoder Lift Function Lift-specific adjustments Lift Posi…
- Page 23
Parameter Description Display Meaning US_ro User read-only, programming inhibited, parameter can be read-only US_on User on, programming enabled Lb.02 Customer-specific password With this parameter a customer-specific password can be defined. It becomes active at the next switch-on and must then be entered before the programming of LB.01. Input Function 11…65535… - Page 24
Parameter Description Input-coded setpoint selection (Lb.05 = 2) Speed Terminal X2A.10 Terminal X2A.11 Terminal X2A.12 Terminal X2A.13 Terminal X2A.17 VL (LF.21) VN (LF.22) VI (LF.23) V1 (LF.24) VR (LF.20) Analog setpoint setting (Lb.05 = 3 or 4) The analog setpoint setting is done over terminals X2A.1 and X2A.2. The speed is calculated according to fol- lowing formula: value „3“… - Page 25
Parameter Description Lb.10 In-/ Output configuration With this parameter the programming of the digital inputs (Lb.11…13) and the digital outputs (Lb.14…17) can be enabled. The programming is generally inhibited for positioning operation (Lb.01 = 2…4). Input Setting Programming Description inhibited The configuration of the in- and outputs is reset to factory set- ting. - Page 26
Parameter Description Lb.18 Brake resistance value Value range Setting Description 0,5…300,0 Ω 30,0 Ω Input of the actually used brake resistance value. With it the inverter calculates the refed energy and outputs the result in parameter LI.23. It serves as decision support on whether the employment of a feedback unit would be worth it. -
Page 27: Input Of Motor Data
Parameter Description Input of the motor data Display Name Setting range Default setting AG Ld.00 Parameter group drIuE Ld.01 Power rating 0,10…400,00 kW 4,0 kW Ld.02 Rated speed 0,000…4000,000 1450,000 Ld.03 Rated current 0,0…710,0 A 1,0 A Ld.04 Rated frequency 0,0…710,0 Hz 50,0 Hz Ld.05…
- Page 28
Parameter Description Ld.05 Cos phi Value range Setting Description 0,5…1,0 Input of the cos phi of the motor according to motor name plate. Ld.06 Rated voltage Value range Setting Description 120…830 V 400 V Input of the motor rated voltage according to motor name plate. Ld.07 Calibration of winding resistance (only at Lb.03 = A G or A GL) Value range… - Page 29
Parameter Description Ld.11 Maximum torque of inverter Value range Setting Description 0,0…xxxx Nm Based on the peak current of the inverter, the maximum torque that can be supplied by the inverter, is displayed. Ld.12 Maximum torque limitation Value range Setting Description 0,0…xxxx Nm 0,95 •… - Page 30
Parameter Description Adjustment of the speed encoder Display Name Setting range Default setting LC.00 Parameter group LC.01 Selection motor encoder input 0…1 LC.02 Encoder 1 Status LC.03 Encoder alarm mode 0…15 LC.11 Display Interface 1 LC.12 Increments Encoder 1 0…65535 inc 2500 Ink LC.13 Track change and travel direction inverting Encoder 1… -
Page 31: Adjustment Of The Motor Encoder And Shaft Encoder
During read out of the encoder the error „E.Enc1“ is output. KEB identifier undefined. Storage structure of the encoder does not correspond to the KEB definition, thus data cannot be read. By writing on it the encoder is defined. Error „E.Enc1“…
- Page 32
Parameter Description Value Installed encoder interface SSI — SIN/ COS In case of an invalid encoder identifier the error „E.Hyb“ is displayed in Li.01 and the measured value is indicated negated. When changing the encoder interface the error „E.HybC“ is displayed. By writing on this parameter the change is confirmed and the default values for the new interface are loaded. - Page 33
Parameter Description LC.18 System position detection (SPI) Value range Setting Description The function SPI (static pole identification) after control release finds the system position without rotation of the after switching on motor. LC.18 determines when the function be- after direction of rotation re- comes active. - Page 34
Parameter Description LC.24 Operation mode output If one of the encoder channels is used as encoder output, the output increments per revolution can be adapted to the requirements of the control card. Input Setting Description 256 Incr. 1024 Incr. 2048 Incr. 4096 Incr. - Page 35
Parameter Description LC.41 SSI Clock frequency Adjustment of the clock frequency for SSI-encoder. Input Setting Description 156,25 kHz 312,5 kHz LC.42 SSI Data format Input Setting Description Binary-coded Graycode LC.43 SSI Voltage monitoring Input Setting Description GB — 35… -
Page 36: Lift Functions
Parameter Description Lift functions Display Name Setting range Default setting LF.00 Parameter group Funct LF.01 max. speed of system 0,000…15,000 m/s 0,000 m/s LF.02 Traction sheave diameter 0…2000 mm 600 mm LF.03 Gear reduction ratio multiplier 0,00…99,99 1,00/ 30,00 LF.04 Gear reduction ration divisor 0,00…99,99 1,00…
- Page 37
Parameter Description LF.00 Display of current parameter group „Funct“ LF.01 Max. speed of system This parameter limits the speed of the system to the adjusted value. For analog setpoint setting applies 0…±10 V correspond to 0…±LF.01. Value range Setting Description 0,000…15,000 m/s 0,000 m/s LF.02… - Page 38
Parameter Description LF.12 KI Speed controller Value range Setting Description 0…32767 auto Adjustment of the I-amplification of the speed controller reset time. LF.13 KI Speed controller Offset Value range Setting Description 0…32767 auto Serves for an improved load transfer at high-efficient gearboxes. LF.14 KP Current controller Value range… - Page 39
Parameter Description LF.22 VN Nominal speed Value range Setting Description 0,000 m/s…LF.01 0,000 LF.23 VI Inspection speed Value range Setting Description 0,000…0,630 m/s 0,000 m/s • it cannot be accelerated from the inspection speed LF.24 V 1 intermediate speed 1 Value range Setting Description… - Page 40
Parameter Description LF.33 Jerk at begin of deceleration Value range Setting Description 0,10…9,99 m/s³ 1,00 m/s³ LF.34 Deceleration Value range Setting Description 0,10…2,00 m/s² 0,90 m/s² LF.35 Jerk at end of deceleration Value range Setting Description 0,10…9,99 m/s³ 0,70 m/s³ LF.36 Stopping jerk Value range… - Page 41
Parameter Description LF.43 Level overspeed Value range Setting Description 0,000…18,000 m/s auto The displayed value is 110 % of the maximum speed (LF.01). LF.44 Deceleration check level Value range Setting Description 0,000…15,000 m/s auto The displayed value is 96 % of the rated speed LF.22). LF.45 Level „running open doors“… - Page 42
Parameter Description LF.50 Drive OH Delay time If a drive shall still be made despite a hot motor, a deceleration time between warning and triggering the excess temperature error can be adjusted with this parameter. After the adjusted time has expired the inverter switches off the modulation with error E.dOH. - Page 43
Parameter Description LF.60 Indication levelling path Value range Setting Description 0,0…264,0 cm The time of constant drive in crawl speed (VL) is measured and displayed after each run in standardized cm. . LF.61 Deceleration point Deceleration point without optimization with optimization Levelling path optimization V With the levelling distance optimization the levelling path become shorter by the entered value. -
Page 44: Positioning Mode
Parameter Description Positioning mode / ogive run Display Name Setting range Default setting LP.00 Display „POSI“ LP.01 Ogive function 0…2 LP.02 Minimum deceleration distance (calculated) 0,0…6553,5 cm auto LP.03 Deceleration distance (measured) -3276,7…3276,7 cm 0,0 cm LP.04 Correction distance 0,0…6553,5 cm 10,0 cm LP.00 Display of current parameter group „POSI“…
- Page 45
Parameter Description Ogive run with crawl path (DOL= digital ogive with leveling speed) This operating mode is recommended • for all conventional control with levelling switches. • if control run-times lead to large tolerances. • if strong slip develops on the leading sheave. •… - Page 46
Parameter Description Ogive run with direct approach (DODA = digital ogive with direct approach) This operating mode is recommended • if the change-over of the speed inputs takes place precisely and fast (ca. 1 ms) • if the mentioned problems at ogive run with crawl path do not exist. Otherwise it result in non-levelling. The procedure is activated by adjusting the crawl speed LF.21 to 0 m/s. - Page 47
Parameter Description LP.02 Minimum deceleration distance (calculated) Value range Setting Description 0,0…6553,5 cm auto only display LP.03 Deceleration distance (measured) Value range Setting Description -3276,7…3276,7 cm 0,0 cm Distance from deceleration point to levelling signal. LP.04 Correction distance Value range Setting Description 0,0…6553,5 cm… -
Page 48: Information, Indications And Measured Values
Parameter description Information, indications and measured values Display Name Unit Default setting LI.00 Display „InFo“ LI.01 Inverter status LI.03 Set speed LI.04 Actual speed LI.07 Actual car speed LI.08 Floor distance LI.09 Set torque LI.10 Actual torque display LI.11 Apparent current LI.12 Actual load LI.13…
- Page 49
Parameter description LI.00 Display of current parameter group „InFo“ LI.01 Inverter status This parameter shows the current status (e.g. constant run, acceleration counter-clockwise rotation) of the inverter. You find a table of all status and error messages in the annex. LI.03 Set speed Display… - Page 50
Parameter description LI.12 Actual load Display Description 0…200 % LI.13 Peak load Display Description 0…200 % LI.14 Actual DC link voltage Display Description 0…1000 V Display of the current DC link voltage in volt. Typical values are: V-class Normal operation Overvoltage (E.OP) Undervoltage (E.UP) 230 V… - Page 51
Parameter description LI.18 Terminal output status Decimal Output Function value X2A.18 X2A.19 X2A.24…26 Display of the currently set external and internal digital outputs. A certain value is X2A.27…29 given out for each digital output. If several outputs are activated, the sum of the internal A decimal value is displayed. - Page 52
Parameter description LI.26 Minimum deceleration distance V Value range Description 0,0…6553,5 cm Indicates the calculated deceleration distance for V LI.27 Minimum deceleration distance V Value range Description 0,0…6553,5 cm Indicates the calculated deceleration distance for V LI.30 Inverter type Meaning Meaning Inverter size binary-coded, e.g. - Page 53
Parameter description LI.36 Software version Operator Value range Description 0,00…9,99 Display of the software version number of the operator. LI.37 Software date Operator Value range Description 0…65535 Display of the software date of the operator in the format „DD.MM.Y“. LI.38 Software version Interface Value range Description… - Page 54
Parameter description LI.41 Last Error (t-1) LI.42 Last Error (t-2) LI.43 Last Error (t-3) LI.44 Last Error (t-4) LI.45 Last Error (t-5) LI.46 Last Error (t-6) LI.47 Last Error (t-7) LI.48 Last Error (t-8) Value range Description 0000…5FFFh The parameters LI.41…48 show the last eight errors that occurred. The oldest error is in LI.48. - Page 55
Parameter description LI.51 AN1 Display after amplification Value range Description 0…±400 % The parameter shows the value of the analog signal AN1 after running through the characteristic amplification in percent. The value range is limited to ±400 %. LI.52 AN2 Display before amplification Value range Description 0…±100 % The parameter shows the value of the analog signal AN2 before the characteristic amplification in percent. -
Page 56: Adjustment Of Analog Inputs And Outputs
Parameter description Adjustment of analog inputs and outputs Display Name Setting Range Default setting LA.00 Display „AnLog“ LA.01 AN1 setpoint selection 0…2 LA.02 AN1 interference filter 0…4 LA.03 AN1 zero point hysteresis 0…±10 V 0,2 V LA.04 AN1 amplification 0,00…±20,00 1,00 LA.05 AN1 Offset X…
- Page 57
Parameter description LA.03 AN1 zero point hysteresis Value range Setting Description 0…±10 % 0,2 % Through capacitive as well as inductive coupling on the inputs lines or voltage fluctuations of the signal source, the motor connected to the inverter can drift („vibrate“). - Page 58
Parameter description LA.06 AN1 Offset Y Value range Setting Description 0,0…±100,0 % 0,0 % This parameter shifts the input characteristic on the Y-axis. LA.07 AN1 lower limit LA.08 AN1 upper limit Value range Setting Description 0,0…±400,0 LA.07 The parameter serves for the limitation of the analog signal AN1 after the -400,0 amplifier stage. - Page 59
Parameter description LA.13 AN2 Offset X Value range Setting Description 0,0…±100,0 % 0,0 % The parameter shifts the input characteristic on the X-axis. LA.14 AN2 Offset Y Value range Setting Description 0,0…±100,0 % 0,0 % The parameter shifts the input characteristic on the Y-axis. LA.15 AN2 lower limit LA.16… -
Page 60: Adjustment Of Torque Precontrol
Parameter description Adjustment of pretorque function 1) Preparations • Enter motor data • Connect load weighing equipment to X2A.3 and X2A.4 • Switch on the pretorque with Lb.7 =1 • Drive the cabine to the middle of the shaft • Remain at the same position in the shaft when carrying out the measurements •…
- Page 61
Parameter description Example 3: Same system data as in example 2, but the installed motor is rotated by 180°. Empty cabine LI.52 = L1 = -5 % LI.10 = -1080 Nm T1 = -108 % Full cabine LI.52 = L2 = 80 % LI.10 = +1320 Nm T2 = +132 % Gain LA.12 = (-108 %-132 %)/(-5 %-80 %) = 2,82… -
Page 62: Start-Up
Start with the basic settings (Lb-parameter). Store the adjusted data by pressing the „Enter“-key. Start-up of an asynchronous motor without speed encoder with gearbox The following procedure is recommended for the start-up of the COMBIVERT F5 Lift with a gearbox-fitted asyn- chronous motor: Lb.03: Selection of the appropriate motor type (Lb.03= A G/ 0:ASM closed loop geared)
-
Page 63: Start-Up Of An Asynchronous Motor With Speed Encoder And Gearbox
Start-up Start-up of an asynchronous motor with speed encoder and gearbox Lb.03: Selection of the appropriate motor type (Lb.03= AG/ 0: ASM closed loop geared) Lb.05: Select the mode of setpoint setting Ld.01 Ld.06: Enter the motor data according to the name plate. Ld.11: If necessary, limit the maximum torque for normal operation.
-
Page 64: Start-Up Of A Synchronous Motor With Speed Encoder Without Gearbox
Start-up Start-up of a synchronous motor with speed encoder without gearbox Lb.01: Input of password Lb.03: Select the appropriate motor type (Lb.03=S GL/ 3: SSM closed loop gearless) Lb.05: Select the mode of setpoint setting Lb.10: Decide, whether you want to assign other functions to the digital in-/outputs. Lb.18: If you want to know the energy losses on the braking resistor, enter the value of the brake resistor Ld.02 Ld.10: Enter the motor data according to the name plate.
-
Page 65: Error Diagnosis
Error Diagnosis Error Diagnosis At KEB COMBIVERT error messages are always represented with an «E.» and the appropriate error code in the display. Error messages cause the immediate deactivation of the modulation. Restart possible only after reset or autoreset. Malfunctions are represented with an «A.» and the appropriate message. Reactions to malfunctions can vary.
- Page 66
Error Diagnosis Display COMBIVIS Meaning The message is output if as response to a warning signal the quick-stop STOP Quick stop function becomes active. Error Messages Error: can occur in the case of switched on brake control, if the load is below the minimum load level at start up or the absence of an E. - Page 67
Error Diagnosis Display COMBIVIS Meaning No more overload, OL-counter has reached 0%; after the error E.OL a cooling phase must elapse. This message appears upon completion of E.nOL No error overload the cooling phase. The error can be reset now. The inverter must remain switched on during the cooling phase. - Page 68
Error Diagnosis Display COMBIVIS Meaning Error: During the initialization the power circuit could not be recognized E.Puci Error ! Unknown power unit or was identified as invalid. Error: Power circuit identification was changed; with a valid power circuit this error can be reset by writing to SY.3. If the value displayed in SY.3 E.Puch Error ! Power unit changed is written, only the power-circuit dependent parameters are reinitialized. - Page 69
Error Diagnosis Display COMBIVIS Meaning A level between 0 and 100 % of the load counter can be adjusted, when A. OL Warning ! Overload it is exceeded this warning is output. The response to this warning can be programmed. The warning is output when the standstill continuous current is excee- ded (see technical data and overload characteristics). - Page 70
Error Diagnosis GB — 70… -
Page 71: Adjustment Speed Controller Of F5 Lift With «Speed Jump
Adjustment Speed Controller of F5 Lift with «speed jump» 1. Open control release (terminal X2A.16) => frequency inverter in status „noP“ 2. Select closed loop operation => Parameter LF.10 = 2 3. Motor without load 4. Set parameters LF.30, LF.31, LF.32 to maximum values 5.
- Page 72
+39 02 33535311 • fax: +39 02 33500790 net: www.keb.it • mail: kebitalia@keb.it KEB Power Transmission Technology (Shanghai) Co.,Ltd. No. 435 QianPu Road, Songjiang East Industrial Zone, KEB Japan Ltd. CHN-201611 Shanghai, P.R. China 15–16, 2–Chome, Takanawa Minato-ku fon: +86 21 37746688 • fax: +86 21 37746600 J–Tokyo 108-0074…
Parameter Description
Inverter status
Error „E.EncC»
Please con-
sider LC.31 and/or
chapter 2.3.
Error „E.Enc1″
Error „E.Hyb»
LC.03
Encoder alarm mode
Input
0
2
8
10
LC.11
Display Interface 1
Shows which encoder interface is installed and thus which encoder may be connected to channel 1 (X3A).
Value
Installed encoder interface
0
none
11
Hiperface
12
Incremental encoder input 24 V HTL
13
Incremental encoder input TTL with error detection
14
SIN/COS
15
Incremental encoder input 24 V HTL with error detection (push-pull)
16
ENDAT
17
Incremental encoder input 24 V HTL with error detection
19
Resolver
Value Description
The correct evaluation of the system position is no longer ensured. The error E.EncC can
only be reset via parameters Ec.00/LC.11.
Exception ! An error, due to wrong encoder increments (value 70), is immediately reset,
once the correct encoder increments are adjusted. Attention, if the control release is still
set, the modulation is enabled !
64
Encoder unknown and not supported.
68
No encoder connected of encoder breakage detection has tripped.
69
System deviation too large. The position, determined from the incremental signals,
and the absolute position (from absolute track, zero signal or serial read) no longer
match or cannot be corrected.
see LC.12/ LC.22!
70
Adjusted increments do not match the encoder increments.
71
Interface type is unknown: Interface was not identified.
75
Encoder temperature is too high (message from encoder)
76
Speed is too high (message from encoder)
77
Encoder signals are outside the specifications (message from encoder)
78
Encoder has an internal defect (message from encocer)
92
Encoder is formatted. When writing on an encoder, whose storage structure does
not correspond to the KEB definition, the storage areas are reorganized, so that
they can be written on. Depending on the storage structure, this process can take
several seconds.
96
New value recognized, because another encoder was plugged in.
98
Interface is busy.
During read out of the encoder the error „E.Enc1″ is output.
97
KEB identifier undefined. Storage structure of the encoder does not correspond to
the KEB definition, thus data cannot be read. By writing on it the encoder is defined.
The error can be reset as follows:
• Writing a system position into Ec.2.
• Carry out a system position alignment .
0
No communication between interface and control board
255
Setting
Description
x
off
Channel 1
Channel 2
Channel 1 and 2
continued on next page
GB — 31
- Печать
Страницы: 1 [2] 3 4 … 16 Вниз
Тема: KEB лифт F5 (Прочитано 63156 раз)
0 Пользователей и 1 Гость просматривают эту тему.
Какая-то засада нарисовалась. Частотник КЕВ F5-Lift. Пульт подключен через удлинитель. Станция ШК6272. При подключении в станции нулевого защитного провода РЕ на частотнике вылетает переходной блок, через который к частотнику подключается выносной пульт.
Пока в станции не был подключен РЕ, все было нормально, частотник запрограммировался. При подключении РЕ, на пульте высветились все восьмерки. Отключил РЕ, подключил пульт напрямую к частотнику – пульт работает.
На сайте КЕВ нашел письмо, в котором пишется о возможно неправильном расключении разъема в кабеле энкодера. Этот кабель пока не проверял. Но там пишут, что вылететь может энкодер или плата сопряжения энкодера с частотником, про этот блок не упоминают. Кто-нибудь сталкивался с подобным? Экспериментировать больше не хочется, два блока уже вылетело.
Еще не могу найти информации по микросхемам в этом блоке:
Записан
спасибо
Производитель Texas Instruments, полная маркировка SN75LBC179A
SN75LB179A Datasheet (PDF)
Информация о маркировке (PACKAGING INFORMATION) на 11-й странице документа.
Записан
Кажись, вычислил засаду. Ситуация следующая: в обоих блоках вылетела одна и та же микросхема 7LB179, по восьмой ноге (вход приемника) коротыш на общий питания. По схеме эта нога соединена с выходом передатчика МАХ488 (пятая нога), расположенном в разъеме, втыкаемом в выносной пульт.
Контактная площадка в цепи пятой ноги МАХ488 расположена на самом краю печатной платы и этим краем печатная плата касается крепежной втулки в корпусе разъема. Стоит на разъем слегка нажать и восьмая нога 7LB179 оказывается соединенной с корпусом разъема. Если корпус разъема соединен с защитным РЕ, микросхеме наступает кирдык.
Предполагаю, что с такой конструкцией подобный инцидент будет не последним.
Записан
спасибо
Добрый вечер. Не могу запустить KEB. При адаптации пишет 1 OPE. В описании этого нет.
Записан
это вроде не завершенного процесса… Попробуй станцию переключить (выключить -включить).
Записан
Скорее сообщение о недопостимости операции. Тут не
(выключить -включить).
тут скорее просто выключить плату и попробовать протестировать с отключеной платой.
Записан
Сообщение I_OPE возникает при вводе параметров в защищенные ячейки памяти преобразователя, когда на входе безопасности (клемма 16) присутствует сигнал разрешения работы. Как выше написал Наладчик, говорит о недопустимости операции.
Записан
При попытке автотюнинга — идентификации двигателя
(Прописываем параметры мотора и энкодера, LD.14 ставим в 1, нажимаем Enter,
зажимаем контакторы KM2 и KM5) вылетает ошибка E.Hyb (ранее вылетала E.encC).
Не тот энкодер или просто с ним нет связи? Вариант 1 при подключении к станции ШК6272. Лебёдка WSG 1.3.
Кто-нибудь может описать алгоритм автотюнинга поподробнее?
Обязательно-ли делать обучение системной позиции (LC.18 —> 4, LC.19 —> 1)?
Или кто-то запускал вышеописанные комплекты?
Записан
Наладчик по лифтам, электромеханик с удостоверением и 3-ей группой электробезопасности.
Для начала необходимо проверить кабель энкодера, артикульный номер кабеля укажите. Обучение системной позиции делать обязательно.
Записан
спасибо
В документе BA_WSGS1_E11.pdf указано, что может быть два вида энкодеров на лебёдке WSG-S1.3
1) SSI oder EnDat (ERN 413, энкодер Хейденхан)
2) 1 sine and cosine signal with 1 per/rotation (ERN 487, энкодер тоже от Хейденхан)
К счастью, одинаковых по числу импульсов и вольтажу.
Кто-нибудь сталкивался с этими двумя вариантами?
Артикульный номер пока не скажу — объект в 16 км. от меня.
когда на входе безопасности (клемма 16) присутствует сигнал разрешения работы.
Т.е. надо делать тюнинг при несобранной ЦБ?
Фото шкафа ШК6272.
« Последнее редактирование: Май 14, 2015, 17:57:58 от liftgeneer »
Записан
Наладчик по лифтам, электромеханик с удостоверением и 3-ей группой электробезопасности.
SinCos энкодер ERN487 выдает синусоиды, а не меандр. В остальном обычный инкрементальный энкодер.
EnDat (ECN 413 или ECN 1313) выдает точно такие же синусоиды (если не частотник не пользует дополнительные каналы, то может работать с ним как ERN — формат ничем не отличается) плюс данные по цифровому каналу. Это абсолютный энкодер и по цифровому каналу может передавать данные о точном положении вала в любой момент времени.
Отличать или по маркировке или по концам (если кабель не перепутали, но это достаточно тяжело — разъем у энкодера разный и впридачу сам разъем нестандартный — хрен найдешь такой).
Если есть проводники R+, R- значит точно ERN.
Если есть CLOCK и DATA (тоже плюс и минус) значит точно EnDat — не путать с сигналами C+/C- и D+/D- которые есть у ERN — назначение их совсем разное.
Скорее всего стоит все таки EnDat…
Записан
Заменили кабель энкодера, автотюнинг запустился и благополучно был завершён.
Движение было в противоположную сторону, путём изменения
LC.13 0 -> 1 -> 17 добился правильного направления.
LC.16 меняется от 16000 до 60000.
Лифт движется из МП, прокинув подвесник, убрав одну из перемычек, добились движения из «ревизии».
Вернули старый кабель энкодера — работает (ранее, видимо, был неконтакт).
Жаль,что на пульте частотника нет индикации текущих значений частоты, напряжений, величины тока.
Монтаж лифта продолжается.
Записан
Наладчик по лифтам, электромеханик с удостоверением и 3-ей группой электробезопасности.
Жаль,что на пульте частотника нет индикации текущих значений частоты, напряжений, величины тока.
Всё индицируеться в соответствующих параметрах.
Записан
Ребята, подскажите в чём засада? Пытаемся запустить лифт в монтажную ревизию, забили параметры по инструкции быстрого ввода в эксплуатацию КЕВ f5 lift. с синхронным двигателем. Провели идентификацию двигателя. Всё прошло успешно. На станции ШК-6272 тоже всё в норме. При пуске включаются контакторы главного привода а реле к7и контактор тормоза КМ4 не включаются. Станция пишет «нет снятия тормоза». Провода расключены правилно, обрывов нет. С уважением.
Записан
Лифт отработал 3 года ШУЛМ двигатель асинхронный.При пуске включается контактор главного привода а реле KV19 не включаются. Пробовали Ld.14 и Ld15. местами менять с соответствующей заменой проводов в разъёме. Может включится, а может и нет. Когда не включается реле тормоза частотник пишет ошибка E. br. Кидал провод с разъёма частотника напрямую к плате с реле KV19-909 и 132 на колодку в другие места. Несколько раз проедет нормально,потом опять вылетит. Фишкой реле принудительно включал, тормоз отрабатывает нормально. Идеи для танцев с бубном закончились. Все провода протянуты и проверенны.
Записан
Новости филологии. Поднимаясь пешком на шестнадцатый этаж, грузчик Николай подобрал сто синонимов к словосочетанию «плохие лифтеры».
- Печать
Страницы: 1 [2] 3 4 … 16 Вверх
-
Contents
-
Table of Contents
-
Bookmarks
Quick Links
COMBIVERT F5
ELEVATOR DRIVE
Version 1.72
Related Manuals for KEB COMBIVERT F5
Summary of Contents for KEB COMBIVERT F5
-
Page 1
COMBIVERT F5 ELEVATOR DRIVE Version 1.72… -
Page 2
This instruction manual describes the COMBIVERT F5 ELEVATOR DRIVE. Before working with the unit the user must become familiar with it. This especially applies to the knowledge and observance of the following safety and warning indications. The icons used in this instruction manual have the following meaning:… -
Page 3: Table Of Contents
Table of Contents 1. General ………… 9 4.4 Changing Parameter Values ……54 4.5 Parameter Structure ……….54 1.1 Product description ……….9 4.6 Saving Parameter Values ……..55 1.2 Summary of Changes ……..10 4.7 Error Messages ……….55 1.2.1 Functions …………..
-
Page 4
Table of Contents Set speed …………….132 Traction sheave diameter …………98 Command speed …………..132 Gear reduction ratio …………..98 Actual output frequency ………….132 Roping ratio …………….99 Load weight…………….99 Actual speed value …………..132 Estimated gear reduction ………….99 Encoder 1 speed …………..132 Encoder interface …………..100 Encoder 2 speed …………. -
Page 5
Table of Contents 9.0 Input/Output Confi guration ….. 146 9.1 Digital Input Parameters ………146 Input Type …………….146 Noise Filter …………….146 9.2 Digital Output Parameters ……147 Output Inversion …………..147 Output X2A.18 …………..147 Output X2A.19 …………..147 Output X2A.24..26 ………… -
Page 7
READ FIRST — SAFETY PRECAUTIONS AC motor controls and servo drives contain dangerous voltages which can cause death or serious injury. During operation they can have live Danger to Life «energized» un-insulated parts, moving parts, as well as hot surfaces. Care should be taken to ensure correct and safe operation in order to minimize risk to personnel and equipment. -
Page 9: General
General 1. General 1.1 Product description In selecting the COMBIVERT F5 series inverter, you have chosen a frequency inverter with the highest quality and dynamic performance. The F5 inverter has the following features: small mounting footprint large die IGBTs power circuit gives low switching losses…
-
Page 10: Summary Of Changes
General 1.2 Summary of Changes 1.2.1 Functions The following functions are new. Each will be described in more detail on the following pages. RUN / STOP — LF.3 = RUN or STOP with serial communication Static Pole Identifi cation — LF.3 = SPI Inertia Learn — LF.3 = I Lrn External Load Weighing Pretorque — LF.30=3 confi gured without US.17, US.18, P.LF.31, P.LF.32…
-
Page 11: Model Number Information
General 1.3 Model number information Part Number 15.F5.A1G-RL02 2 = software/function V1.72 / CPU v4.3 Unit identifi cation 3 = peak power unit 0 = none installed at the factory Feedback Card J = HTL input, TTL output M = SINCOS, TTL output F = HIPERFACE, TTL output P = ENDAT, TTL output V = Sin/Cos-SSI, TTL input…
-
Page 12: Mounting Instructions
General 1.4 Mounting instructions 1.4.1 Classifi cation The elevator drive is classifi ed as an «Open Type» inverter with an IP20 rating and is intended for «use in a pollution degree 2 environment.» The unit must be mounted inside of a control cabinet offering proper environmental protection.
-
Page 13: Electrical Connections
General 1.4.4 Ambient Conditions Maximum Surrounding Air Temperature 45°C! The operating temperature range of the unit is -10°C to + 45°C (14°F to +113°F). Operation outside of this temperature range can lead to shut down of the inverter. The unit can be stored (power off) in the temperature range -25°C to 70°C (-13°F to +158°F).
-
Page 14: Disconnect Switch
General Connection of the F5 series inverters to voltage systems confi gured as a corner grounded delta, center tap grounded delta, open delta, or ungrounded delta, may defeat the internal noise suppression of the inverter. Increased high frequency disturbance in the controller and on the line may be experienced. A balanced, neutral grounded wye connection is always recommended.
-
Page 15: Line Chokes
General Table 1.5.4.2 — 480V Units SCCR UL 248 Semiconductor UL 489 Unit Size / [kA] Class J Fuse Number* / MCCB [A] / Housing Rating [A] Rating [A] Siemens Cat. No. 13 / E 50 140 06 40 / 40 14 / E 50 140 06 50 / 50 14 / G…
-
Page 16: Motor Thermal Protection
General Installation of a line choke is recommended and can be used prevent nuisance errors and protection caused by voltage spikes. Additionally, the use of a line choke will double the operational lifetime of the DC bus capacitors in the unit. 1.5.6 Motor Thermal Protection The F5 series inverters are UL approved as a solid state motor overload protection device.
-
Page 17: High Voltage Connections
General 1.5.8 High Voltage Connections Always note inverter voltage, select appropriate over current protection devices, select disconnect device, and select proper wire size before beginning the wiring process. Wire the drive according to NFPA 70 Class 1 requirements. The correct wire gauge for each size inverter can be selected from the charts under Section 2.1-2.2 .
-
Page 18: Technical Data
2. Technical Data 1.5.10 High Frequency Shielding Use of shielded cable is recommended when high frequency emissions or easily disturbed signals are present. Examples are as follows: — motor wires: connect shield to ground at both the drive and motor, NOTE the shield should never be used as the protective ground conductor required by NFPA70 or CSA22.1.
-
Page 19: Storage Of The Unit
This causes heat and gas and leads to the destruction of the capacitors. In order to avoid failures, the KEB F5 Combivert must be started up according to the following specifi cation based on duration of storage period (powered off): Storage Period <…
-
Page 20: Technical Data 230V (Size 13 To 21)
Technical Data 2.1 Technical data 230V (size 13 to 21) Inverter Size [hp] Recommended Motor Power Housing size Unit Hardware Input Ratings Supply voltage [V] 180…260 ±0 (240 V rated voltage) Supply voltage frequency [Hz] 50 / 60 +/- 2 Input phases Rated input current [A] [awg]…
-
Page 21
4) This is the power dissipation at the rated carrier frequency, rated voltage and rated load. Operation at reduced carrier frequencies or reduced load will decrease this value. 5) Max motor cable length when using shielded cable, KEB EMI fi lter, and the installation must conform to EN55011 / EN55022. -
Page 22: Technical Data 460V (Size 13 To 19)
Technical Data 2.2 Technical Data 480V (Size 13 to 19) Inverter Size Recommended Motor Power [hp] Housing size Unit Hardware Input Ratings 305…528 ±0 (480 V Nominal Supply voltage voltage ) Supply voltage frequency [Hz] 50 / 60 +/- 2 Input phases Rated input current [A] 15.4…
-
Page 23
4) This is the power dissipation at the rated carrier frequency, rated voltage and rated load. Operation at reduced carrier frequencies or reduced load will decrease this value. 5) Max motor cable length when using shielded cable, KEB EMI fi lter, and the installation must conform to EN55011 / EN55022. -
Page 24: Technical Data 460V (Size 20 To 26)
4) This is the power dissipation at the rated carrier frequency, rated voltage and rated load. Operation at reduced carrier frequencies or reduced load will decrease this value. 5) Max motor cable length when using shielded cable, KEB EMI fi lter, and the installation must conform to EN55011 / EN55022.
-
Page 25: Dimensions And Weight
Dimensions 2.3 Dimensions and weight E Housing G Housing H Housing 11 lb 22 lb 31 lb U Housing R Housing 166 lb 55 lb Mounting Holes Dimensions in inches Ø F Housing 5.12 11.4 8.75 0.28 10.8 13.4 10.0 0.28 13.0 11.7 13.4 10.0 0.28…
-
Page 26: Summary Of The Power Circuit Terminals
Power Circuit Terminals 2.4 Summary of the power circuit terminals Housing size E Verify input voltage with name plate for proper connection 230V or 480V L1, L2, L3 3 phase supply voltage ++, — — Connection for DC supply ++, PB Connection for braking resistor N/L2 U, V, W…
-
Page 27: Connection Of The Power Circuit
Power Circuit Terminals Verify input voltage with name plate for proper connection 230V or 480V Housing size R and U Note always verify input voltage with name plate for proper connection T1, T2 Connection for temperature sensor L1, L2, L3 3 phase supply voltage U, V, W Motor connection…
-
Page 28
Connection of the Power Circuit Wiring diagram 3 (+)PA PB Supply fuse COMBIVERT F5 Disconnect switch or contactor Motor choke or output fi lter Line choke Motor Interference suppression fi lter Sub panel in control cabinet External motor temperature sensor… -
Page 29: Time Dependent Overload Curve
Overload Characteristic 2.6 Time dependent overload curve If the load current exceeds the rated current but is below the over current level, an overload timer begins counting. The rate at which the timer increments is a function of load current. The higher the current the faster the increments. When the counter reaches the limit the fault E.OL is triggered and the output to the motor is shut off.
-
Page 30: Low Speed Overload
PWM. As a result, the continuous output current must be limited at low speeds to prevent the power transistors from overheating. The COMBIVERT F5 will drop the carrier frequency to 4kHz if necessary to be able to continue to provide current to the motor. Once the output frequency rises above 3Hz or the current drops below the levels listed below, the carrier frequency will be returned to the higher value.
-
Page 31: Installation And Connection
3.0 Installation and Connection 3.1 Control Circuit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3.1.1 Terminal Strip Connections Function Name Description…
-
Page 32: Connection Of The Control Signals
Installation and Connection 3.1.2 Connection of the In order to prevent a malfunction caused by interference voltages on the control signals control inputs, the following steps should be observed: • Establish a true earth ground for all ground connections! • Do not connect drive signal commons to earth ground! •…
-
Page 33: Voltage Input / External Power Supply
Installation and Connection 3.1.5 Voltage Input / The supply to the control circuit through an external voltage source keeps External Power Supply the control in operational condition even if the power stage is switched off. To prevent undefi ned conditions (false triggering), fi rst switch on the power supply then the inverter.
-
Page 34: Encoder Connections
Installation and Connection 3.2 Encoder ONLY when the inverter is switched off and the voltage Connections supply is disconnected may the feedback connectors be removed or connected! Connect the incremental encoder mounted on the motor to the 15-pin Sub-D connector at X3A on the COMBIVERT F5M. This connection 3.2.1 X3A RS422/TTL provides speed feedback and is imperative to the proper operation of Incremental Encoder…
-
Page 35
Installation and Connection 1. Maximum Encoder voltage: +5.2 V 2. Encoder line number: 1…16383 ppr 2500 ppr is recommended and gives best speed resolution and regulation performance for applications with a maximum motor speed of up to 4500 rpm. F5M Interface cutoff frequency: 300 kHz Observe cutoff frequency of the encoder: g •… -
Page 36: X3A Ttl Inc. Enc. In Screw Terminals
Installation and Connection ONLY when the inverter is switched off and the voltage 3.2.2 X3A TTL Inc. Enc. supply is disconnected may the feedback connectors In Screw Terminals be removed or connected! Connect the incremental encoder mounted on the motor to the 8 position terminal connector at X3A.
-
Page 37
Installation and Connection Input equivalent circuit approx. approx. 34 120 Selection of the supply voltage 15 V 24 V or external supply via the control control card The maximum load capacity is dependant on the selected voltage supply. Max. -
Page 38: X3A Hiperface Encoder
Installation and Connection 3.2.3 X3A Hiperface The Hiperface encoder provides two differential analog channels for Encoder incremental position and one serial data channel for communication with the encoder. This serial data channel can provide the drive with the absolute position of the motor as well as other operating data. The analog cosine and sine wave signals of tracks A and B have a voltage of 1 Vpp with an Offset of 2.5 V.
-
Page 39
Installation and Connection Drive connection Pin No Signal Description X3A Female SUBD 15 HD REF_COS signal input A- (difference signal to COS+) REF_SIN signal input B- (difference signal to SIN+) COS+ signal input A (absolute track for counter and direction detection) SIN+ signal input B (absolute track for counter and direction detection) -
Page 40
Imax = supply current of encoder [amps] V = voltage supply of the drive = 7.5V Vmin = minimum supply voltage of the encoder R = cable resistance (0.07 Ω/m) for KEB cables The following Hiperface®-encoders have been tested for use: •… -
Page 41
Installation and Connection Signals Format of the analog channels 1 wave cycle per increment For a 1024 ppr encoder this is equal to 360° /1024 = 0.352° mechanical revs. +2,5V 1Vss 0V (COM) +2,5V 0V (COM) -
Page 42: X3A Endat Encoder
Installation and Connection 3.2.4 X3A EnDat The EnDat encoder provides two differential analog channels for incremental Encoder position and one serial data channel with clock for communication with the encoder. This serial data channel can provide the drive with the absolute position of the motor as well as other operating data.
-
Page 43
Installation and Connection Drive connection Pin No Signal Description X3A Female SUBD 15 HD REF_COS signal input A- (difference signal to COS+) REF_SIN signal input B- (difference signal to SIN+) + CLOCK synch. signal for serial data — CLOCK synch. signal for serial data COS+ signal input A (absolute track for counter and direction detection) SIN+ signal input B… -
Page 44
V = voltage supply of the drive = 5.25V Vmin = minimum supply voltage of the encoder R = cable resistance (0.07 Ω/m) for Standard KEB cables (0.03 Ω/m) for type «L» KEB cables The following ENDAT encoders have been tested for use: •… -
Page 45
Installation and Connection Signals Format of the analog channels 1 wave cycle per increment For a 1024 ppr encoder this is equal to 360° /1024 = 0.352° mechanical revs. +2,5V 1Vss 0V (COM) +2,5V 0V (COM) -
Page 46: X3A Sin/Cos-Ssi Encoder
Installation and Connection 3.2.5 X3A SIN/COS-SSI The SIN/COS-SSI encoder provides two differential analog channels Encoder for incremental position and one serial data channel with clock for communication with the encoder. This serial data channel can provide the drive with the absolute position of the motor. The analog cosine and sine wave signals of tracks A and B have a voltage of 1 Vpp with an Offset of 2.5 V.
-
Page 47
Installation and Connection Drive connection Pin No Signal Description X3A Female SUBD 15 HD REF_COS signal input A- (difference signal to COS+) REF_SIN signal input B- (difference signal to SIN+) + CLOCK synch. signal for serial data — CLOCK synch. signal for serial data COS+ signal input A (absolute track for counter and direction detection) SIN+ signal input B… -
Page 48
V = voltage supply of the drive = 5.25V Vmin = minimum supply voltage of the encoder R = cable resistance (0.07 Ω/m) for Standard KEB cables (0.03 Ω/m) for type «L» KEB cables The following SIN/COS-SSI encoders have been tested for use: •… -
Page 49
Installation and Connection Signals Format of the analog channels 1 wave cycle per increment For a 1024 ppr encoder this is equal to 360° /1024 = 0.352° mechanical revs. +2,5V 1Vss 0V (COM) +2,5V 0V (COM) -
Page 50: X3B Incremental Encoder Output
Installation and Connection 3.2.6 X3B Incremental ONLY when the inverter is switched off and the voltage supply is disconnected may the feedback connectors Encoder Output be removed or connected! The second incremental encoder connection serves as a buffered output of the motor encoder. This can be used by other control systems for speed or position control.
-
Page 51
Installation and Connection Signal channels A and B 2…5V 0…0,5V 2…5V 0…0,5V 2…5V 0…0,5V 2…5V 0…0,5V… -
Page 52: Operation Of The Unit
4. Operation of the unit 4.1 Digital Operator The Elevator drive uses a special operator which provides a user interface and functionality specifi c to elevator applications. The operator must be plugged into the drive in order for the drive to function correctly. Unplugging the operator while the drive is in operation will result in immediate shutdown of the drive and will cause the ready relay to drop and the fault output to activate.
-
Page 53: Parameter Identifi Cation
Keypad Display 4.2 Parameter Identifi cation Parameter Offset Parameter Group Parameter Number The blinking point determines the active (changeable) part of the parameter identifi cation 4.3 Parameter Selection change between parameter With the keys group and With the keys parameter number ENTER ENTER…
-
Page 54: Changing Parameter Values
Keypad Display 4.4 Changing Parameter Values START Display Parameter Display Parameter Identifi cation Value FUNC. Increase/Decrease SPEED Parameter Value START START ENTER FUNC. ENTER FUNC. SPEED SPEED STOP STOP STOP Changing Parameter Values All parameter changes are accepted for operation and saved only after the ENTER key is pressed.
-
Page 55: Saving Parameter Values
Keypad Display di-Parameter: di.0 … di.3 The di parameters are comprised of parameters for defi ning the input functions 4.6 Saving Parameter Values If the parameter value is changed, a point appears behind the last position in the display. The adjusted parameter value is permanently saved when ENTER is pressed.
-
Page 56: Initial Start-Up
Initial Start Up 5. Initial Start-up 5.1 Selecting The Confi guration Before trying to operate the drive it is necessary to establish the correct mode of operation. The F5 drive is capable of driving different types of motors both open and closed loop. Therefore prior to operation, the type of motor and mode of operation (open or closed loop) must be established.
-
Page 57: Setting The Control Type
Initial Start Up 5.3 Setting The Control Type The COMBIVERT drive supports six different control modes, digital speed selection and control, analog speed control, analog torque control. The drive’s I/O will need to be set up according to the desired scheme. From the table below select the desired control scheme and adjust the corresponding number in parameter LF.2.
-
Page 58: Induction Motor Data
Initial Start Up 5.5.2 Induction Motor Enter the motor rated speed (rpm) in LF.11. For IM this value is not Data the synchronous speed but the full load rpm which is always less than synchronous speed. An example is a 6 pole motor; the synchronous speed is 1200 rpm but the rated speed is lower, about 1165 rpm.
-
Page 59
Initial Start Up 3) If the controller is providing the speed command via analog or serial command, set the inspection speed value in the controller to zero. If the drive is providing the command there is no need to change the inspection speed in the drive. -
Page 60: Pm Synchronous Motors
Initial Start Up 5.6 PM Synchronous Motors 5.6.1 Motor Overload The COMBIVERT drive is capable of providing solid state motor overload protection. If it is desired that the drive provide this protection, turn the function “on” in parameter LF.08. The drive uses the motor current from LF.12.
-
Page 61: Auto-Tuning Pm Motors
Initial Start Up 5.6.3 Auto-Tuning PM For best performance the resistance and the inductance of the PM motor motors must be measured by the drive. Use the following steps to complete the measurement for PM synchronous motors. Set up 1) Make sure the rated motor speed (LF.11), rated motor current (LF.12), rated motor frequency (LF.13), rated motor torque (LF.17) and contract speed (LF.20) are entered into the drive before you begin.
-
Page 62: Machine Data
Initial Start Up FAIL : the measurement sequence was interrupted, i.e. the inspection switch was released prematurely, or the controller dropped the enable signal to the drive. Verify if the controller is dropping the signal by fi rst setting LF.3 to conf and try again. If the controller still drops the enable and the motor contactor, the problem lies in the controller.
-
Page 63: Encoder Feedback
Initial Start Up 5.8 Encoder Parameters LF.26…LF.29 and optionally parameters LF.76 and LF.77 are Feedback used to establish the encoder feedback. 5.8.1 Encoder card The most important point is to verify that the installed feedback card matches verifi cation the encoder type on the motor. The drive supports many different types of encoders, some of which require different feedback cards as options.
-
Page 64: Other Encoder Adjustments
Initial Start Up 5.8.3 Other encoder Enter in LF.27 the pulses per revolution of the encoder, i.e. 1024, 2048, adjustments 4096 etc. LF.28 can be used to swap the encoder channels such that the encoder is incrementally counting in the same direction as the motor. Initially leave this parameter set to 0 or no reversal.
-
Page 65: Speed And Profi Le Settings
Initial Start Up 5.10 Speed and The speeds are adjusted through parameters LF.41…LF.47. The profi le is adjusted through parameters LF.50…LF.56. Profi le Settings When operating with digital speed selection and control, each speed must be adjusted respectively. LF.41 = Leveling speed LF.42 = High speed LF.43 = Inspection speed LF.44 = high leveling speed…
-
Page 66
Initial Start Up Initial Steps 1) Verify the motor is correctly connected to the drive, i.e. phase U->U, V->V, W->W. With PM motors you can not have an arbitrary phasing. If direction reversal is required, the system direction can be reversed in LF.28 after the pole position is learned. -
Page 67: Absolute Encoder Setup (No Ropes)
Initial Start Up FAILd: The encoder position samples are not consistent within 4,000 counts after 11 samples. In this case try the procedure again and note the learned values. If all displayed values are consistent, it would be sufficient to use an approximate average and enter it into LF.77.
-
Page 68
Initial Start Up the actual position value of the encoder. As the motor moves this value will change. When the motor rotor has aligned with a pole, the value will stabilize. At this point, the alignment has been found. Continue holding the inspection switch as the drive will then try to move the motor clockwise and counter clockwise to verify the motor’s rotation is consistent with the encoder’s. -
Page 69: Absolute Encoder Setup (With Ropes)
Initial Start Up The following will outline the procedure for aligning an absolute encoder for 5.11.3 Absolute Encoder use with a permanent magnet motor and the following encoders: HIPERFACE, Setup (with ropes) ENDAT, SIN/COS. The motor must be mounted in place and be electrically connected to the elevator controller.
-
Page 70
Initial Start Up Alignment Process 1) Set LF.3 = P Lrn. The display should confi rm with StArt. 2) Press and hold the inspection up switch. Motor current will begin to fl ow in one phase and the current will ramp up to the motor’s rated value. The motor sheave should turn slowly and then stop when the motor rotor has lined up with one of the motor poles. -
Page 71: Absolute Encoder Position Verifi Cation
Initial Start Up 4) For high speed runs under load, it may be necessary to raise 0.LF.36 to a higher value. This value should not be set to a value higher than the motor manufacturer’s peak torque value, usually 2.0 to 2.4 times the motor’s rated torque.
-
Page 72: Encoder Synchronization
Initial Start Up 5.11.5 Encoder It is necessary to determine whether or not the motor encoder is in Synchronization phase with the rotation of the motor. As an example the motor is turning clockwise and the encoder is indicating clockwise rotation. The problem TTL, H T L , SI N /C OS comes when the encoder indicates rotation opposite to the actual rotation…
-
Page 73: High Speed Tuning
Initial Start Up 5.12 High Speed Tuning For optimum control of the elevator, it is recommended to learn the system 5.12.1 System Inertia inertia and activate the feed forward torque controller. Feed forward control Learn reduces the dependence on the speed feedback from the motor by predicting what the system will do and providing the required torque command based on that prediction.
-
Page 74: Feed Forward Torque Control, Fftc
Initial Start Up 9) Run the car up and down a few times. Note that during the acceleration, the same value should be reached and then a much lower value during the constant speed portion of travel. Disregard the values during deceleration.
-
Page 75: Speed Gain Adjustment
Initial Start Up 5.12.3 Speed When not using the FFTC or when the gain of the FFTC must be kept lower, Gain Adjustment the speed control gains play a greater rol in controlling the elevator. Always start adjustment with the proportional gain LF.31 and then proceed on the the integral gains in LF.32 and LF.33.
-
Page 76
Initial Start Up LF.31 = 5000 Loud audible noise or vibration from the motor, lower the value in steps of 500 until the noise/vibration stops. LF.42 Integral Gain The integral gain is responsible for correcting long term average error in speed as well as providing increased control and rigidity at lower speeds for starting and stopping. -
Page 77
Initial Start Up LF.33 provides an offset to the gain value at low speeds. Again this parameter provides two adjustments; one for acceleration and one for deceleration. During starting and stopping it is necessary to have higher gain values to overcome friction as well as maintain good control. -
Page 78
Initial Start Up Common problems during stopping and their solutions LF.33 = 500 Speed Speed lags during the fi nal phase of decel, one slow oscillation just before stop, under shooting of fl oor. Raise in steps of 500. LF.33 = 3000 Speed Higher offset value leads to bunching or steps during fi nal approach, faster oscillations, reduce… -
Page 79: Synthetic Pre-Torque
Initial Start Up Synthetic pre-torque is a feature of the drive which can be used to minimize, if not 5.12.4 Synthetic totally eliminate, the roll back which normally occurs when the brake is lifted. Pre-Torque The function is turned on in parameter LF.30 and adjusted in parameters US.17 & US.18 and P.LF.31 &…
-
Page 80
Initial Start Up The goal is to adjust timer US.17 Pretorque such that the pre-torque ramp down ramp up timer Ramp Current phase occurs exactly when the brake US.17 down timer check US.18 releases and the roll back occurs. 300mS Note: by monitoring LF.86 it is possible to see what phase the drive is in. -
Page 81: Parameter Description
Parameter Description — Basic Set Up 6. Parameter Description 6.1 US-Parameters With different passwords different parameter groups can be accessed for advanced programming. Password By selecting LoAd and pressing ENTER, all the LF parameters are returned to the factory default values. Note the display will automatically change to show the value of LF.99 upon successful Load defaults loading of the default values.
-
Page 82: Other Us Parameters
Parameter Description — Basic Set Up These US parameters are special parameters which are not needed Other US parameters in every application. They are turned off by default by the control manufacturer. The following serves only as a list of these parameters. For further adjustment refer to section 8.0.
-
Page 83: Lf-Elevator Parameters
Parameter Description — Basic Set Up 6.2 LF-Elevator Parameters This value determines the type of speed selection and rotation setting. Signal / operating mode Value range: AbSPd = Absolute Analog Speed d SPd = Digital Speed Selection A tor = Analog Torque Control A SPd = Analog Speed Control SErSP…
-
Page 84
Parameter Description — Basic Set Up a) Analog set speed selection LF.02 = AbSPd A unipolar analog signal is connected to the terminals X2A.1(+) and X2A.2 (-). Terminals X2A.3 and X2A.4 can be used for pre-torque input. Additionally with this setting the analog output (X2A.5) for motor speed becomes unipolar as well. -
Page 85
Parameter Description — Basic Set Up c) Analog Torque control LF.02 = A tor The differential analog signals are connected to the terminals X2A1(+) and X2A2(-) and X2A3(+) and X2A4(-). The actual torque command is the sum of the differential inputs. Torque command = (X2A1 — X2A2) + (X2A3 — X2A4). -
Page 86
Parameter Description — Basic Set Up e) Digital serial communication LF.02 = SErSP Serial communication is used to operate the drive in speed control mode. The cyclic serial update rate at 56kbps is about 11mSec. The default serial parameter channel assignments are listed below. Other assignments are possible and are freely assigned via the serial communication. -
Page 87
Parameter Description — Basic Set Up Binary coded set speed selection LF.02 = bnSPd Binary speed setting uses preset digital values in the drive as com- mand speeds. The drive creates the driving profi le between selected speeds. The inputs are binary coded to allow up to seven speeds. Additionally in this mode, more advanced and multiple profi les can be established. -
Page 88: Drive Confi Guration
Parameter Description — Basic Set Up This parameter is used to put the drive into different modes. The modes are defi ned below. Drive confi guration Value range: run Run mode. All normal functions. conF Confi guration mode. Used in special cases to trouble shoot operation StoP Drive stopped.
-
Page 89: Selected Motor
Parameter Description — Basic Set Up This parameter displays the current mode of operation, open or closed loop, geared or gearless, induction motor, synchronous motor. The parameter is read only. Selected motor Possible displays: ICLSd = Closed loop induction I9LSS = Closed loop induction gearless PCLSd = Closed loop permanent magnet…
-
Page 90: Electronic Motor Overload Protection
Parameter Description — Basic Set Up This parameter is used to activate and select the type of motor overload function. Depending on the setting of this parameter, the Elevator Drive will trigger a drive fault E.OH2 causing the motor to stop. The trigger level is Electronic established in parameters LF.9 or LF.12 motor overload…
-
Page 91: Electronic Motor Overload Current
Parameter Description — Motor Data The following parameters confi gure the COMBIVERT Elevator Drive to the particular motor. Correct adjustment of these parameters is critical for proper operation of the system. Depending on the mode of operation the units and or range of acceptable values may change.
-
Page 92: Rated Motor Power
Parameter Description — Motor Data Enter the rated power of the motor. Unit: Rated motor power Value range: 0.0…125 hp Default setting: 5.0 hp Adjustment value: in accordance with the motor name plate The power value is calculated from the torque and speed. Therefore this parameter becomes read only.
-
Page 93: Rated Motor Speed
Parameter Description — Motor Data Unit: Value range : 10.0..6000.0 or 500.0 (based on confi guration mode) Rated motor speed Default setting: 1165.0 or 150.0 (based on confi guration mode) Adjustment value: in accordance with the motor name plate For permanent magnet synchronous motors there is no slip. Therefore the value entered must be exactly the synchronous rotational speed based on the rated frequency as noted below.
-
Page 94: Rated Motor Voltage
Parameter Description — Motor Data Enter the name plate rated voltage. Unit: volt Value range: 120…500 V Rated motor voltage Default setting: 230 or 460 V based on drive voltage Adjustment value: in accordance with the motor name plate Enter the no load phase to phase back EMF rms voltage at rated speed (LF.11).
-
Page 95: Field Weakening Speed
Parameter Description — Motor Data The fi eld weakening speed determines at which speed the peak torque limit starts being reduced. It is necessary to reduce the peak torque limit of the motor since the drive’s ability to force current into the motor is limited by the applied voltage as rated speed is Field weakening speed reached.
-
Page 96: Rated Motor Torque
Parameter Description — Motor Data For IM the torque value is calculated from the rated speed (LF.11) and rated power (LF.10). Therefore this value is read only. Rated motor torque Unit: lb ft Value range: 1…10000 lb ft Default setting: Calculated For PM motors the torque value must be entered and is used to establish the torque constant.
-
Page 97: Pm Motor Resistance
Parameter Description — Motor Data This parameter not required for closed loop induction motor operation and will not be visible in these modes. PM motor resistance For PM motors enter the phase to phase resistance value. Some motor manufacturers list the per phase value therefore you must multiply by two.
-
Page 98: Contract Speed
Parameter Description — Machine Data The following parameters relate to the machine data of the elevator. It is important to enter the correct values, such that both the motor and the car run at the correct speed. This is the elevator contract speed. The speeds adjusted in parameters LF.42…LF.47 are limited by LF.20.
-
Page 99: Roping Ratio
Parameter Description — Machine Data Unit: Value range: 1…8 (1:1…8:1) Default setting: Roping ratio Adjustment value: in accordance with the system data Unit: pounds Value range: 0…30000lbs Default setting: 0 lb Load weight Adjustment value: in accordance with the system This parameter is read only and will change when adjustments are made to LF.11, LF.20, LF.21 or LF.23.
-
Page 100: Encoder Interface
Parameter Description — Encoder Set Up This parameter is used to manage the encoder interface and its surrounding functionality. Depending on the type of encoder and encoder interface only some of these functions are supported. The Encoder interface parameter has been expanded using an offset number to denote the function.
-
Page 101
Parameter Description — Encoder Set Up This parameter displays the type of encoder feedback installed in the drive. It is also used to reset E.ENCC error. Under normal operation this parameter dispalys the type of encoder feedback card installed in the drive. See the list below. -
Page 102
Parameter Description — Encoder Set Up This parameter displays the status of the connected encoder along with error messages and in case of a malfunction. It is only supported by HIPERFACE, EnDAt or SIN/COS-SSI encoders. Refer to the table on the following page for possible displays and their meanings. -
Page 103
Parameter Description — Encoder Set Up 2LF26 Fault Codes Display Description Fault cause and solution Serial Com. Established Position values are being transferred to the encoder, encoder conn and serial interface are working. Unknown encoder ID Encoder is an unknown type and does not support the required EncId serial communication protocol. -
Page 104: Encoder Pulse Number
Parameter Description — Encoder Set Up Unit: pulse per revolution Value range: 256…16384 pulse per revolution Default setting: 1024 pulse per revolution Encoder pulse number Adjustment value: in accordance with the manufacturer specifi cations If the incremental encoder pulse number is not correctly adjusted, the elevator drive can run very slowly, or over-speed is possible or other unforeseen conditions may occur.
-
Page 105: Encoder Sample Time
Parameter Description — Encoder Set Up This parameter is used to adjust the sample time of the encoder feedback for calculation of the actual motor speed value. With certain motors or encoders it may be benefi cial to use a time other than the Encoder sample time factory setting.
-
Page 106: Control Mode
See parameters US.17, US.18, P.LF.31 and P.LF.32 for further adjustment. When using induction motors, the COMBIVERT F5 can be run open loop in inspection to verify whether the encoder functions normally. By setting the parameter LF.30 = 0, the inverter runs the motor open loop. The encoder feedback (motor speed) is displayed in parameter LF.89 but has no effect on…
-
Page 107: Kp Speed Accel
Parameter Description — Control Settings The proportional gain of the speed controller is split into two values, one for acceleration and constant run and one for deceleration. This provides the greatest degree of fl exibility. The default values are set the same for both Kp speed accel.
-
Page 108: Ki Speed
Parameter Description — Control Settings This gain value is effective only at low speeds. This value is added to the I term gain in LF.32 to provide greater control and more stability. Ki speed This offset acceleration gain will assist the motor in catching the load during offset accel.
-
Page 109: Max. Torque Emergency Oper
Parameter Description — Control Settings The maximum torque during emergency operation is activated through parameter LF.61. This allows the drive to limit the torque and therefore the output current to the rated value to prevent the drive from drawing too much current from a battery back up supply.
-
Page 110: Open Loop Torque Boost
Parameter Description — Control Settings Adjusts the torque boost only during open loop operation (LF.30=0). If the torque boost is too low the motor may not be able to lift the load. Too much or too little boost can lead to high Open loop torque boost current while running open loop.
-
Page 111: Leveling Speed, S
Parameter Description — Driving Profi le The run profi le is defi ned by up to seven different speeds and up to three different sets of accelerations and decelerations. Various combinations of these are available depending on the mode of control adjusted in parameter LF.2. The following section describes the adjustment of the speeds and profi les.
-
Page 112: Intermediate Speed 1
Parameter Description — Driving Profi le Intermediate speed one, uses profi le 0 acceleration and decelera- tion. Can be assigned as emergency operation speed. Set Speed S Unit: feet per minute INT1 Intermediate Speed 1 Value range: 0…LF.20 Default setting: 0 ft/min Adjusted value: dependent on the distance between the…
-
Page 113: Starting Jerk
Parameter Description — Driving Profi le The run profi le is defi ned by jerks, acceleration, and deceleration. Each jerk, accel and decel holds three different values and is indexed through the offset number (lead number in from of the parameter number). These different values make up three different run profi les which are either assigned based on the selected speed or through another parameter.
-
Page 114: Acceleration Jerk
Parameter Description — Driving Profi le Sets the jerk during the roll into constant speed. Unit: feet per second Value range: (calc. min. )…32.00 ft/s (oFF) Default values: Profi le 0 = 4.0 ft/s Profi le 1 = 4.5 ft/s Profi le 2 = 1.5 ft/s Acceleration jerk Sets the jerk in the roll out of constant speed.
-
Page 115
Parameter Description — Driving Profi le Graphical view of speed profi les Binary speed selection (LF.2 = bnSPd) Normal High Speed Speed LF.42 0.LF.52 0.LF.53 0.LF.54 0.LF.51 0.LF.55 LF.41 LF.56 0.LF.50 Earthquake Speed Speed LF.45 0.LF.53 150ft/min 0.LF.52 max. 0.LF.54 0.LF.51 0.LF.55 LF.41… -
Page 116
Parameter Description — Driving Profi le Inspection Speed Speed 1.LF.53 LF.43 1.LF.52 1.LF.54 1.LF.51 1.LF.55 1.LF.50 High Leveling Speed Speed 1.LF.53 LF.44 1.LF.52 1.LF.54 1.LF.55 1.LF.51 LF.41 LF.56 1.LF.50 High Speed Stop Speed Without Leveling Speed LF.56 LF.42 0.LF.52 0.LF.51 LF.56 LF.56 0.LF.50… -
Page 117: Recommended Profi Le Settings
Parameter Description — Driving Profi le Recommended Profi le Settings These are the recommended profi le settings for standard 6 pole (1165 rpm) motors with geared machines. For other motors and gearless these values can also be used as a good starting point however, further adjustment may be required.
-
Page 118: Speed Following Error
Parameter Description — Special Functions Triggers a drive warning if the actual motor speed deviates from the com- manded speed by more than the window defi ned in parameter LF.58 and for the length of time defi ned in LF.59. This function only works in closed Speed following error loop speed control mode, ie.
-
Page 119: Emergency Operation Mode
Parameter Description Determines how the emergency power function is activated. The emergency power function allows the drive to run off of a UPS or battery back up system, 460V units can be run from a 230V 1 phase supply. 230V units Emergency operation can be run from a 230V 1 phase supply.
-
Page 120: External Load Weigher
Parameter Description A car weighing system can be used to provide an analog signal to the elevator drive which is proportional to the load in the cabin. When LF.30 is set to 3, this analog signal is used to generate an External Load Weigher exact counter torque to hold the car stationary when the brake is Pre-torque gain…
-
Page 121: Speed Start Delay
Parameter Description This time delay allows the brake to release before the motor starts turning. The drive will hold the speed command at zero, including analog commands, for the adjusted time. Speed Start Delay Unit: seconds Value range: 0.0…3.0 s Default setting: 0.3 s Adjusted value:…
-
Page 122: Encoder Resolution Multiplier
Parameter Description This parameter can be used to increase the resolution of encoders with analog sine/cosine tracks. The encoder types are SIN/COS, Hiperface, EnDat. Encoder resolution multiplier Unit: 1 Value range: 0…13 Default setting: 2 for incremental encoders 8 for Sin/Cos, EnDat, or Hiperface encoders The value corresponds to the multiplier using the following relation.
-
Page 123: Brake Engage Time
Parameter Description This parameter determines how long the drive will maintain full current and control of the motor after the direction inputs, X2A.14 and X2A.15 have been turned off. After the adjusted time, motor Brake engage time current will continue to fl ow, however the analog input will be clamped and the speed control gains will be reduced.
-
Page 124: Software Version
Diagnostic Parameters Display of the software version of the Elevator Operator. Software version Display of the software date. Format DD.MM.Y Software date Note: The lead character of the date may be blanked if it is a zero. Example: data code 0208.1 display reads as 208.1…
-
Page 125: X2A Input State
Diagnostic Parameters Terminal X2A This parameter displays the status of the digital inputs on terminal X2A. Each input has a specifi c value. See the table below for decoding. X2A Input state Terminal Description Value Number(s) Function none none No signals are active on terminal X2A.10 to X2A.17 X2A.16 Only the enable signal is active on X2A.16.
-
Page 126
Diagnostic Parameters Terminal Description Value Number(s) Function X2A.12 Only the High Leveling speed signal at X2A.12 is active. Drive will not run until enable signal on X2A.16 and direction signal on X2A.14 or X2A.15 are active. X2A.12,X2A.16 EN,HL Both the Enable and High Leveling speed signals are active. -
Page 127: X2A Output State
Diagnostic Parameters Terminal X2A This parameter displays the status of the digital outputs on terminal X2A Output state X2A. Each output has a specifi c value. If more than one output is active, the sum of the value is displayed. Value table: Value Output…
-
Page 128: Inverter Load
Diagnostic Parameters Display of the actual inverter load in %. 100% equals rated load of the inverter. Inverter load Displays the motor set speed in rpm, calculated from the system data. Motor command speed Displays the actual motor speed in rpm measured from the motor encoder .
-
Page 129: Phase Current
Diagnostic Parameters Display of the actual phase current. Resolution 0.1A Phase current Maximum motor phase current that occurs during operation. Display in [A]. The value can be deleted by pressing the UP or DOWN key. The memory is also deleted when the inverter is switched off. Peak phase current Display of the actual dc-bus voltage Resolution: 1V…
-
Page 130
Diagnostic Parameters Error messages are always represented by an “E” in the left most position of the display. The drive fault displays are listed and described on the following pages. All faults are automatically reset up to an adjustable number of times. See parameter LF.5. Clearing the fault history The fault history can be cleared with the following steps: Set the display to 0.LF.98… -
Page 131: Inverter Status
Status Messages When the drive powers up, the default display is parameter LF.99. This parameter shows various messages indicating the current operation of the drive. Each code and its meaning is described below. Inverter status Normal Operating Messages Display Signifi cance Comments No Operation, idle state terminal X2.1 (Drive Enable) is not set…
-
Page 132: Run Parameters
Diagnostic Parameters 7.0 Run Parameters The run parameters display operational values within the elevator drive. They can be used for trouble shooting or calibration purposes. Each parameter is listed below along with a description of what it displays. Some parameters may display information only used by factory service personnel during diagnostic or repair.
-
Page 133: Commanded Torque
Diagnostic parameters This is the internal torque command value which is fed into the current controller. ru.11 Commanded Units: Nm torque This is the actual torque value which is calculated from the motor current. ru.12 Actual torque Units: Nm ru.13 This is the load level of the inverter.
-
Page 134: Output Voltage
Diagnostic Parameters ru.20 This is the actual phase to phase output voltage to the motor. Output voltage Units: Volts The raw status of the input terminals. Each input is binary weighted according to the ru.21 table below. If an input is activated the value corresponding to the input is displayed. Input terminal If multiple inputs are activated the sum of the values is displayed.
-
Page 135: Output Fl Ag State
Diagnostic parameters This is the state of the internal output fl ags. Multiple active fl ags result in the sum ru.24 of the values. Output fl ag state Flag Value This is the state of the actual outputs. Multiple active outputs result in the sum of ru.25 the values.
-
Page 136: Analog Pre-Torque Raw
Diagnostic Parameters This parameter displays the value of the actual pre-torque signal applied between ru.29 terminal X2A.3 and X2A.4. The value is in percent +/- 100.0% = +/- 10.00V. This Analog pre- value is unfi ltered and unprocessed. torque raw Units: % This parameter displays the processed analog pre-torque value.
-
Page 137: Motor Pot
Diagnostic parameters Value of the internal function. ru.37 Motor pot Units:% value This is the temperature of the output transistors. ru.38 Power module Units: °C temperature Overload counter display. Once the load of the drive goes above 100% this counter ru.39 begins to increment.
-
Page 138: Motor Temperature
Advanced Parameters Displays the motor temperature. This value is only valid when the motor has a KTY ru.46 thermal sensor installed and that sensor is connected to the T1/T2 terminals. Motor temperature Units: °C ru.54 Display the value of the internal position counter. Position Units: counts counter…
-
Page 139: Advanced Adjustments
Advanced Parameters 8.0 Advanced Adjustments There are additional US parameters which can provide further functional adjustments of the drive. These US parameters are all those greater than US.10. The following will provide a basic description of the function of each parameter. The E.OL2 function is designed to protect the inverter from dangerous currents when US.
-
Page 140: Synthetic Pre-Torque Brake Release Timer
Advanced Parameters The function of this parameter only applies to LF.30 = 5 Synthetic pre-torque. US. 17 Synthetic This timer inserts dead time prior to brake release during which the current check Pre-torque function occurs and the motor becomes magnetized. In this case it should always Brake Release be adjusted less than the actual mechanical brake pick time.
-
Page 141: Max. Speed For Max. Ki
Advanced Parameters Refer to section 5.12.3 for additional information on how to adjust parameters US.20-23. These parameters can be used to tailor the KI Offset gain to a specifi c speed range US. 20 at low speed. Worm gear applications require a smaller KI Offset value but over Max.
-
Page 142: Speed Dependent Kp Gain
Advanced Parameters These parameters allow the KP gain to be scaled dependent on the command speed US. 22 of the elevator. In some cases it is benefi cial to reduce the gain at high speed to Speed minimize system response to hoistway vibrations or disturbances. Parameter US.22 dependent KP turns the variable gain function on or off and parameter US.23 adjusts the value to gain…
-
Page 143: Phase Current Check
Advanced Parameters This parameter can be used to select what type of current check is performed. US. 25 Additionally it determines whether or not the brake on/off message is displayed. In the Phase current event there is a problem getting a consistently positive phase check, it is possible to check switch to only a magnetizing current check.
-
Page 144: Analog Pattern Gain
Advanced Parameters The analog pattern can be scaled directly through this parameter. As an example if US. 34 the analog signal is +/- 0…5 V, the pattern gain can be changed to 2.00 to provide Analog pattern full scale control of the motor speed. gain Value range: 0.01…20.00 Default setting:…
-
Page 145: Analog Output 2 Confi Guration
The following options in the table below can be assigned to the analog output 2. US. 84 Torque is scaled such that 10V = 3 x Motor Rated Torque. Analog Output 2 Confi guration Setting 0..+/-10V = +/- Actual Torque Absolute Actual Torque…
-
Page 146: Input/Output Confi Guration
9.0 Input/Output Confi guration 9.1 Digital Input Parameters The digital input parameters can be used to confi gure the digital inputs for operation. Normally these parameters only need to be adjusted by the Elevator control builder. di. 0 Determines whether the inputs are PNP (sourcing) or NPN (sinking). This setting is applied globaly to all inputs.
-
Page 147: Digital Output Parameters
Input/Output Confi guration 9.2 Digital Output The digital output parameters can be used to confi gure the digital Parameters outputs for operation. Normally these parameters only need to be adjusted by the Elevator control builder. Can be used to invert the function of the output. As an example, normally on becomes do.42 normally off.
-
Page 148
Input/Output Confi guration Switching conditions for the digital outputs. Only one condition can be assigned to each output. Designator Function Fault — indicates there is a drive fault. Output activates when there is a drive fault, E.xxx Ready — indicates the drive is ready for operation. Output activates when the drive and ready for operation and there are no active faults E.xxx Drive On — indicates the drive is on and in control of the motor. -
Page 149: Timing Graph — Analog Control
Input/Output Confi guration 9.3 Timing Graph — Analog Control Speed LF.42 Command Speed Actual Speed 2 x LF.41 1.5x LF.41 X2A.16 Enable X2A.14 X2A.15 Down LF.70 or US.17 + US.18 LF.78 & lf.79 LF.78 LF.79…
-
Page 150
Input/Output Confi guration Event Sequence 1) Drive is enabled, outputs assigned to Mcc activate. 2) Direction signal is given. Note if Mcc output function is used, direction signals must be qualifi ed by the closing of the main contactor. 3) The drive performs a current check to be sure the motor is connected and that rated magnetizing current is produced. -
Page 151: Timing Graph — Digital Control
Input/Output Confi guration 9.4 Timing Graph — Digital Control Speed LF.42 Command Speed Actual Speed 2 x LF.41 1.5x LF.41 X2A.16 Enable X2A.14 X2A.12 High spd LF.70 or US.17 + US.18 LF.78 & lf.79 LF.78 LF.79…
-
Page 152
Input/Output Confi guration Event Sequence 1) Drive is enabled, outputs assigned to Mcc activate. 2) Direction signal is given. Note if Mcc output function is used, direction signals must be qualifi ed by the closing of the main contactor. 3) The drive performs a current check to be sure the motor is connected and that rated magnetizing current is produced. -
Page 153
THIS PAGE LEFT BLANK. -
Page 154: Elevator Drive Data
Advanced Drive Data 10.1 Elevator Drive Data These parameters provide access to advance elevator drive parameters related to the motor model, system mechanical model, and advanced control settings. These values should only be changed when instructed to do so by the manufacturer. This parameter provides a better adjustment of the fi eld weakening Ld.18 torque curve.
-
Page 155: Stator Resistance
Advanced Drive Data The per phase induction motor stator resistance in ohms. This Ld.20 parameter is only available for induction motors. Stator resistance For PM motors this parameter is not required and therefore is not visible. The equivalent induction motor sigma inductance. This value is Ld.21 calculated from the per phase stator and rotor leakage inductances.
-
Page 156: Vmax Regulation
Advanced Drive Data Sets the output voltage level as a percentage of the available with 100% equal to Ld.25 the maximum available. The drive will attempt to regulate the output voltage from Vmax going above this value by reducing the magnetizing current of induction motors regulation or de-fl uxing for PM motors.
-
Page 157: Position Control
11.0 Position Control These parameters are used to confi gure the position controller in 11.1 One Floor Position the drive. In order to use this function, the elevator control must Control be designed to give the proper signal sequence ensuring correct operation.
-
Page 158
Position Control Speed High Speed Position Run LF.42 LF.41 Position Floor Level Level Dist. Level Zone Speed One Floor Position Run LF.42 LF.41 Position Floor Level LP.3 Slow Down… -
Page 159: Learning The Slow Down Distance
Position Control Learning the slow down distance The actual slow down distance can be learned by the drive or it can be entered manually. However, it is recommended that the drive actually learn the distance as this will also take into account the internal delays of the controller.
-
Page 160: Min. Slowdown Dist
Position Control This parameter shows the minimum required slow down distance, LP.2 based on the adjusted profi le in parameters LF.53, LF.54, LF.55 Min. slowdown dist. and LF.42, to slow down from contract speed. This value is the actual distance the drive uses to calculate the LP.3 actual deceleration profi le.
-
Page 161
Position Control Correction distance adjustment tips If the correction is too hard, a slight bump may be felt just as the car is coming to the fl oor. -
Page 162: Current Position
Position Control LP.12 This shows the actual position in inches from the slowdown point. When the controller gives the slowdown command by turning off Current position high speed and enabling leveling speed the position value is reset to zero and begins to increment from there. The value displayed at the end of the run is the total distance traveled from the slowdown point.
-
Page 163: Operation Problems
Diagnostics and Troubleshooting 12.1 Operation Problems Troubleshooting Operation Problems and potential solutions. Refer to Section 13.2 for additional Diagnostics Solutions. Additional troubleshooting of learn procedures are listed as well at the end of this sectoin. Problem Cause/Solution/Troubleshoot Motor Does Not Move Check the Motor Current.
-
Page 164
Diagnostics and Troubleshooting Problem Cause/Solution/Troubleshoot Motor Draws High Current Verify the brake picks and does not drag and that there are no other mechanical issues preventing the motor from rotating freely. Verify correct motor data. For PM motors, verify the correct relationship between the Motor Rated Speed, Motor Rated Frequency and the number of motor poles Refer to Section 5.6 for further description. -
Page 165
Diagnostics and Troubleshooting Problem Cause/Solution/Troubleshoot Encoder slippage/mounting The position of the rotor must be known for synchronous (PM) motors (PM motors) for the drive to properly commutate the stator magnetic fi eld and generate torque. Performing a encoder/rotor position learn (LF.03 = SPI or PLrn Encoder Pole Position Learn) determines a corresponding encoder position offset value for a given rotor position. -
Page 166
Diagnostics and Troubleshooting Problem Cause/Solution/Troubleshoot Motor does not go the correct Check whether the Command Speed (LF.88) and Encoder Speed speed or cannot reach high (LF.89) match . speed. Verify whether the Motor (Encoder) Speed is tracking the Command Speed. Check whether the Machine Data parameters (LF.20-25) are set correct. -
Page 167
Diagnostics and Troubleshooting Problem Cause/Solution/Troubleshoot Motor only moves slightly or Check the motor current. Refer to Motor Draws High Current for jerks briefl y additional troubleshooting. Refer to Motor Does Not Move for additional troubleshooting. Output current is limited Check the setting for Maximum Torque. Refer to Peak current limit or (clamped) Maximum Torque limit reached for additional troubleshooting. -
Page 168
Diagnostics and Troubleshooting Problem Cause/Solution/Troubleshoot Motor noise (squealing/ Check whether the Sample Rate for Encoder (LF.29) is too high or too grinding sound), but not low; 4-8ms is typical. vibration; does not affect ride quality Check whether the setting for Encoder Multiplier Factor (LF.76) is correct. -
Page 169
Diagnostics and Troubleshooting Problem Cause/Solution/Troubleshoot High peak current at either Check the brake timing such that the motor is not starting against start or stop the brake and that the brake is not stopping the load. For digital input speed control, the Speed Start Delay LF.70 can be extended to prevent starting under the brake. -
Page 170: Diagnostic Solutions
Diagnostics and Troubleshooting 12.2 Diagnostic Solutions Typical solutions in reference to operational problems in section 12.1. Item # Check/Solution Monitor the Input Status to For the given combination of inputs selected, verify which speed Determine Active Speed command is selected according to the Control Type (LF.02) and X2A (digital input control modes) Input Status (LF.82) .This should match the command speed LF.88.
-
Page 171
Diagnostics and Troubleshooting Item # Check/Solution Monitor the Command Speed If the Command Speed and Motor (Encoder) Speed match, but the and Motor (Encoder) Speed elevator does not travel at the correct speed: Check Motor Command Speed (LF.88) and Actual Motor Speed (LF.89) and check whether the corresponding speed setting in (LF.41- 47) parameters is correct. -
Page 172
Diagnostics and Troubleshooting Item # Check/Solution Encoder/Motor Pole Position For PM motors, the absolute encoder position indicates is used to Incorrect properly indicate the position of the rotor. If the connection of the encoder to the motor shaft changes (removed/replaced, slippage, etc.), the absolute encoder position relative to the motor poles is no long valid and will require the position to be relearned. -
Page 173
Diagnostics and Troubleshooting Item # Check/Solution Check whether Maximum The 0.LF.36 Maximum Torque is used to limit the output current to the Torque setting is reached motor. It is primarily to protect the motor from extreme or prolonged and high enough for normal high currents, which may occur during initial setup or troubleshooting. -
Page 174: Drive Faults
Motor Learn Make sure motor contactor is closing. procedure or during automatic Make sure motor is wired correctly. learn of the encoder position If the problem persists, contact KEB. during each run. *Additional information at end of section…
-
Page 175
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot E.LSF Load shunt fault Load-shunt relay has not picked up, occurs for a short Error Charge time during the switch-on phase, but would automatically Relay Fault be reset immediately. If the error message remains the following causes may be applicable: Load-shunt defective — Replace inverter Input voltage incorrect or too low… -
Page 176
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot EEnC1 Loss of For an incremental encoder interface , the recognition Error Encoder1 incremental of encoder channel breakage or defective track triggers encoder channel a fault if the voltage between two signal pairs (A+/A-, or differential pair B+/B-, N+/N-) is smaller than 2V. -
Page 177
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot E.ENCC Loss of encoder This error should be accompanied with further Error Encoder channel or information describing the nature of the fault. Refer to Interface communication 2.LF.26 Encoder Status for further details. between encoder and drive for an absolute encoder. -
Page 178
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot E.OL2 Occurs if the The cause of the Low Speed Overload would be due to Error Low low frequency, excessive current at low speed (typically below 3Hz). The Speed standstill constant following may be causes of excessive current: Overload current is exceeded (see… -
Page 179
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot E.OH2 Electronic Excessive RMS motor current according to the LF.08 Error Motor Motor Overload Electric Motor Protection overload curve or if the LF09 Protection protection was Peak Motor Current Factor is exceeded for more than 3 activated. -
Page 180
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot E.OC Occurs when the The current and peak current may be viewed in LF.93 Error Over specifi ed peak and LF.94. To reset the logged peak value, press enter Current output current is exceeded or if Causes for over current errors: there is a ground fault. -
Page 181
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot Meg tests to check motor winding insulation can Error Over only be performed with the motor disconnected Current from the inverter. Failure to do so will result in (continued) damage to the output section of the inverter due to high voltage from the meg tester. -
Page 182
KEB. *Additional information at end of section… -
Page 183
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot Time dependent Cause of excessive motor overload may include: Error Overload overload (See overload curves Excessive current. under Technical Data, Section 2.6). Verify correct motor data. Error can not be Verify correct encoder settings including: rest until display shows E.nOL! LF.27 Encoder Pulse Number… -
Page 184
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot E.OS The internal The inverter internal overspeed is dictated as 125% of Error overspeed limit is the LF.20 Contract Speed. This level is fi xed an cannot Overspeed exceeded. be adjusted. Possible causes of an overspeed error include: Incorrect setting of the Machine Data parameters LF.20-25. -
Page 185
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot E.OS Excessive current Error Overspeed Incorrect motor data, specifi cally the motor (continued) rated speed and frequency relationship for PM Synchronous Motors (see Section 5.6). Incorrect Encoder Pole Position (LF.77) for PM Synchronous Motors. Relearn Encoder Pole Position as needed (see Section 5.11) Speed gains set too high or low. -
Page 186
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot E.OP The DC bus The DC bus voltage LF.95 and the peak DC bus voltage Error Over voltage rises LF.96 can be monitored. Voltage above the permissible value When using a braking resistor to dissipate regenerated either during energy from overhauling or deceleration, the braking motor regenerative… -
Page 187
If a braking resistor is used and there is an issue with the braking transistor: If there is an issue due to high frequency noise: Verify proper mains grounding. E.PU General power Inverter must be inspected and repaired by KEB or Error Power circuit fault replaced. Unit E.PUCH The control card This error should automatically clear itself. -
Page 188
Diagnostics and Troubleshooting Error/Message Description Cause/Solution/Troubleshoot E.UP The DC bus Causes for under voltage include: Error Under voltage drops Voltage below the Input voltage too low or unstable. permissible value. Verify input voltage and wiring. The DC bus For 460V drives, should measure approximately 1.41 x AC Input the under voltage phase-to-phase and should match the DC bus… -
Page 189
If reseating the ribbon cable does not resolve the issue, then there may be a failure of the switching power supply and the drive would need to be replaced or inspected and repaired by KEB. I_data Invalid Data Parameter outside of permissible limits… -
Page 190: Parameter List Reference
A.1 Parameter List Reference Para. Name Res. Lower Upper Default Unit Limit Limit LF.2 Signal/Operating Mode 6: bnspd text LF.3 Drive confi guration 2: Stop text LF.4 Drive Mode text LF.5 Drive Fault Auto Reset LF.8 Electronic Mtr Protection 0: OFF text LF.9 Electronic Mtr Protection Current…
-
Page 191
Parameter List Reference Para. Name Res. Lower Upper Default Unit Limit Limit LF.41 Leveling Speed ft/min LF.42 High Speed LF.20 ft/min LF.43 Inspection Speed ft/min LF.44 High Leveling Speed 25% of LF20 ft/min LF.45 Intermediate Speed 1 100% of LF20 ft/min LF.46 Intermediate Speed 2… -
Page 192
Parameter List Reference Para. Name Res. Lower Upper Default Unit Limit Limit LP.1 One Floor Positioning 0:off 2 : P onE LP.2 Maximum Slowdown Distance 200.0 inches LP.3 Slowdown Distance 200.0 inches LP.4 Correction Distance 50.0 inches LP.12 Current Position 9999.9 inches LP.21… -
Page 193
Parameter List Reference Para. Name Res. Lower Upper Default Unit Limit Limit di.0 Input type E R/W 0 = PNP 1 = NPN di.3 Noise Filter E R/W mSec Para. Name Res. Lower Upper Default Unit Limit Limit do.42 Digital Output Inversion E R/W do.80 Output X2A.18… -
Page 194: Customer Parameter Values
A.2 Customer Parameter Values Para. Name Customer Unit Para. Name Customer Unit Value Value 0.LF.36 Maximum Torque lbft LF.02 Steering/Operating Mode 1.LF.36 Max.Torq. (emergency) lbft LF.03 Drive confi guration LF.37 Low Speed Torque Boast LF.04 Drive Mode LF.38 Switching Frequency LF.05 Auto Reset LF.41 Leveling Speed ft/min…
-
Page 195
Customer Parameter Values Advanced Parameters Para. Name Customer Unit Value Para. Name Customer Unit Value LF.68 External Pre-torque Offset US.16 E.OL2 function LF.69 External Pre-torque Direction US.17 Pre — Torque Timer ramp LF.70 Speed Start Delay LF.71 Brake Release Delay US.18 Pre — Torque Timer ramp LF.76 Encoder multiplier US.20 max speed for max KI… -
Page 196
KEB AMERICA INC. © KEB 5100 Valley Industrial Blvd. Mat. No. 00.F5.LUB-K172 Shakopee, MN 55379 Rev. Phone: 952-224-1400 Date 9/2015 www.kebamerica.com…