Модификации алгоритма обратного распространения ошибки

Цель
модификации алгоритма обратного
распространения ошибки – повысить
оперативность обучения ИНС. В основу
модификации была положена идея «упругого
распространения», впервые реализованная
в одноименном алгоритме Rpгop
(Resilent
Propogation
– «упругое распространение») [105]. Суть
идеи Rpгop
состоит в использовании знаков частных
производных для подстройки весовых
коэффициентов. Для определения величины
коррекции используется следующее
правило:


, (4.22)

где

,
а

.

Если
на текущем шаге частная производная по
соответствующему весу wij изменила
знак, то из этого следует, что последнее
изменение было большим и алгоритм
проскочил локальный минимум. Следовательно,
величину изменения необходимо уменьшить
на

 и
вернуть предыдущее значение весового
коэффициента, то есть сделать «откат»
на величину

.

Если
знак частной производной не изменился,
то нужно увеличить величину коррекции
на

 для
достижения более быстрой сходимости.
В результате проведенных экспериментов
(т.е эмпирическим путем) установлено,
что целесообразно выбирать

=1,2,
а

=0,5.
Начальные значения для всех

устанавливались равными 0,1. Для вычисления
значения коррекции весов использовалось
следующее правило:


. (4.23)

Если
производная положительна, т. е. ошибка
возрастает, то весовой коэффициент
уменьшается на величину коррекции, в
противном случае – увеличивается.

Затем
веса подстраивались в соответствии с
выражением:


. (4.24)

Блок-схема
данного алгоритма приведена на рис.
4.24.

Блоки
1,9 используются для пуска и остановки
процесса обратного распространения
ошибок.

В блоке 2 реализован
ввод исходных данных.

Блок
3 обеспечивает инициализацию значений
величин коррекции
.

В
блоке 4 предъявляются все примеры из
выборки и вычисляются частные производные.

Блок
5 рассчитывает новые значения

по формулам (4.22) и (4.23).

В
блоке 6 реализуется корректировка весов
в соответствии с выражением (4.24).

Блок
7 проверяет условие останова данного
процесса. Если условие останова не
выполняется, то управление передается
блоку 4. В противном случае управление
передается блоку 8.

В блоке 8 реализован
вывод полученных результатов.

Совокупность
проведенных экспериментов (более
200), показала, что данный алгоритм
сходится почти в 6 раз быстрее, чем
стандартный алгоритм обратного
распространения ошибок.

    1. 4.12. Эвристическая оптимизация функционирования алгоритма обратного распространения ошибки

Эвристическая
оптимизация функционирования алгоритма
обратного распространения ошибки,
улучшающая его производительность,
проводилась по таким аспектам, как:


выбор режима обучения;


максимизация информативности;


выбор функции активации;


выбор целевых значений функции активации;


выбор начальных значений синаптических
весов и пороговых значений;


реализация обучения по подсказке;


управление параметрами скорости обучения
нейронов.

При
выборе режима обучения было установлено,
что последовательный режим обучения
методом обратного распространения
(использующий последовательное
предоставление примеров эпохи с
обновлением весов на каждом шаге) в
вычислительном плане оказался значительно
быстрее. Это особенно сказалось при
достаточно большом и избыточном обучающем
множестве данных. Причиной этого является
тот факт, что избыточные данные вызывают
вычислительные проблемы при оценке
Якобиана, необходимого для пакетного
режима.

Процедура
максимизации информативности строилась
на следующем правиле: «Каждый обучающий
пример, предоставляемый алгоритму
обратного распространения, должен
выбираться из соображений наибольшей
информационной насыщенности в области
решаемой задачи». С этой целью
использовались, во-первых, примеры,
вызывающие наибольшие ошибки обучения,
и, во-вторых, примеры, которые радикально
отличались от ранее использованных.
Кроме того, при подаче примеров соблюдался
случайный порядок
их следования.

При
выборе функции активации, в интересах
повышения оперативности обучения ИНС,
предпочтение было отдано антисимметричной
функции.

Функция
активации

называется антисимметричной (т.е. четной
функцией cвoeгo apгyмeнтa), если выполняется
условие:


, (4.25)

что
показано на рис. 4.25, а.

Стандартная
логистическая функция не удовлетворяет
этому условию (рис. 4.25, б).

Известным
примером антисимметричной функции
активации является сигмоидальная
нелинейная функция гиперболического
тангенса:


, (4.26)

где
а
и b
— константы. В результате проведенных
экспериментов установлено,
что приемлемыми значениями для констант
а и b
являются следующие [130]: а = 1,7159, b
= 2/3.

Определенная
таким образом функция гиперболического
тангенса имеет ряд полезных свойств.
Например,

(1)
= 1 и

(-1)
= -1.

Кроме
того, в начале координат тaнгeнс угла
наклона (т.е. эффективный угoл) функции
активации близок к единице:

(0) = аb
= 1,7159 х 2/3 = 1,1424.

Вторая
производная

( v)
достигает свoeгo максимального значения
при v
= 1
.

Для
выбора целевых значений функции активации
важно, чтобы они выбирались из области
значений сигмоидальной функции активации.
Более точно, желаемый отклик
dj
нейрона j
выходного слоя многослойного персептрона
должен быть смещен на

некоторую
величину

от границы области значений функции
активации в сторону ее

внутренней
части. В противном случае алгоритм
обратного распространения будет
модифицировать свободные па раметры
сети, устремляя их в бесконечность,
замедляя таким образом процесс обучения
и доводя скрытые нейроны до предела
насыщения. В качестве примера рассмотрим
антисимметричную функцию активации,
показанную на рис. 4.25, а. Для предельного
значения
выберем dj
= а

.
Аналогично, для предельного значения
-a
установим dj
= a +

,
где

соответствующая положительная константа.
Для выбранного ранее значения а
= 1,7159

установим

=
0,7159
.
В этом случае желаемый отклик dj
будет находиться в диапазоне от 1 до +1
(см. рис. 4.25, а).

При
выборе начальных значений синаптических
весов и пороговых значений сети
учитывались следующие правила.

Если
синаптические веса принимают большие
начальные значения, то нейроны быстрее
достигнут режима насыщения. Если такое
случится, то локальные градиенты
алгоритма обратного распространения
будут принимать малые значения, что, в
свою очередь, вызовет торможение процесса
обучения.

Если
же синаптическим весам присвоить малые
начальные значения, алгоритм будет
очень вяло работать в окрестности начала
координат поверхности ошибок. В частности,
это верно для случая антисимметричной
функции активации, такой как гиперболический
тангенс. К сожалению, начало координат
является седловой точкой, т.е. стационарной
точкой, где, образующие поверхности
ошибок вдоль одной оси, имеют положительный
градиент, а вдоль другой — отрицательный.
Поэтому при выборе начальных значений
использовались средние величины. Для
примера рассмотрим многослойный
персептрон, в котором в качестве функции
активации используется гиперболический
тангенс. Пусть пороговое значение,
применяемое к нейронам сети, равно нулю.
Исходя из этого индуцированное локальное
поле нейрона j
можно выразить следующим образом:


. (4.27)

Предположим,
что входные значения, передаваемые
нейронам сети, имеют нулевое среднее
значение и дисперсию, равную единице,
т.е

для
всех i,

для
всех i.

Далее предположим,
что входные сигналы некоррелированны:

и
синаптические веса выбраны из множества
равномерно распределенных чисел с
нулевым средним:


,

и дисперсией:

для
всех пар (j,i).

Следовательно,
математическое ожидание и дисперсию
индуцированного локальнoгo поля можно
выразить так:


(4.28)

где
m
— число синаптических связей нейрона.

На
основании этого результата можно описать
хорошую стратегию инициализации
синаптических весов таким образом,
чтобы стандартное отклонение
индуцировaннoгo локального поля нейрона
лежало в переходной области между
линейной частью сигмоидальной функции
активации и областью насыщения. Например,
для случая гиперболического тангeнca с
параметрами а
и b
(см. определение функции) эта цель
достигается при

в
(4.28). Исходя из этого получим [105]


. (4.29)

Таким
образом, желательно, чтобы равномерное
распределение, из котopoгo выбираются
исходные значения синаптических весов,
имело нулевое среднее значение и
дисперсию, обратную корню квадратному
из количества синаптических связей
нейрона.

Изначально
обучение ИНС реализуется на множестве
примеров, что связано с аппроксимацией
неизвестной функции отображения входного
сигнала на выходной. В процессе обучения
из примеров извлекается информация о
функции f(.)
и строится некоторая аппроксимация
этой функциональной зависимости. Процесс
обучения на примерах можно обобщить,
что и сделано, при добавлении обучения
по подсказке, которое реализуется путем
предоставления некоторой априорной
информации о функции f(.).
Такая информация может включать свойства
инвариантности, симметрии и прочие
знания о функции f
(.)
,
которые можно использовать для ускорения
поиска ее аппроксимации и, что более
важно, для повышения качества конечной
оценки.

Использование
соотношения (4.28) является одним из
примеров тaкoгo подхода.

При
управлении параметрами скорости обучения
нейронов учитывалось следующее.
Теоретически все нейроны многослойного
персептрона должны обучаться с одинаковой
скоростью. На практике оказалось, что
последние слои ИНС имеют более высокие
значения локальных градиентов, чем
начальные. Поэтому параметру скорости
обучения

назначались меньшие значения для
последних слоев сети и большие для
первых. Кроме того, чтобы время обучения
для всех нейронов сети было примерно
одинаковым, нейроны с большим числом
входов имели меньшее значение параметра
обучения, чем нейроны с малым количеством
входов. Величина назначаемого параметра
скорости обучения для каждого нейрона
была обратно пропорциональна квадратному
корню из суммы eгo синаптических связей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Применение алгоритма обратного распространения ошибки — один из известных методов, используемых для глубокого обучения нейронных сетей прямого распространения (такие сети ещё называют многослойными персептронами). Этот метод относят к методу обучения с учителем, поэтому требуется задавать в обучающих примерах целевые значения. В этой статье мы рассмотрим, что собой представляет метод обратного распространения ошибки, как он реализуется, каковы его плюсы и минусы.

Сегодня нейронные сети прямого распространения используются для решения множества сложных задач. Если говорить об обучении нейронных сетей методом обратного распространения, то тут пользуются двумя проходами по всем слоям нейросети: прямым и обратным. При выполнении прямого прохода осуществляется подача входного вектора на входной слой сети, после чего происходит распространение по нейронной сети от слоя к слою. В итоге должна осуществляться генерация набора выходных сигналов — именно он, по сути, является реакцией нейронной сети на этот входной образ. При прямом проходе все синаптические веса нейросети фиксированы. При обратном проходе все синаптические веса настраиваются согласно правил коррекции ошибок, когда фактический выход нейронной сети вычитается из желаемого, что приводит к формированию сигнала ошибки. Такой сигнал в дальнейшем распространяется по сети, причём направление распространения обратно направлению синаптических связей. Именно поэтому соответствующий метод и называют алгоритмом с обратно распространённой ошибкой. Синаптические веса настраивают с целью наибольшего приближения выходного сигнала нейронной сети к желаемому.

Общее описание алгоритма обратного распространения ошибки

К примеру, нам надо обучить нейронную сеть по аналогии с той, что представлена на картинке ниже. Естественно, задачу следует выполнить, применяя алгоритм обратного распространения ошибки:

4-20219-e537a8.png

2-20219-7f9b72.png

В многослойных персептронах в роли активационной функции обычно применяют сигмоидальную активационную функция, в нашем случае — логистическую. Формула:

3-20219-2ac7f4.png

Причём «альфа» здесь означает параметр наклона сигмоидальной функции. Меняя его, мы получаем возможность строить функции с разной крутизной.

Сигмоид может сужать диапазон изменения таким образом, чтобы значение OUT лежало между нулем и единицей. Нейронные многослойные сети характеризуются более высокой представляющей мощностью, если сравнивать их с однослойными, но это утверждение справедливо лишь в случае нелинейности. Нужную нелинейность и обеспечивает сжимающая функция. Но на практике существует много функций, которые можно использовать. Говоря о работе алгоритма обратного распространения ошибки, скажем, что для этого нужно лишь, чтобы функция была везде дифференцируема, а данному требованию как раз и удовлетворяет сигмоид. У него есть и дополнительное преимущество — автоматический контроль усиления. Если речь идёт о слабых сигналах (OUT близко к нулю), то кривая «вход-выход» характеризуется сильным наклоном, дающим большое усиление. При увеличении сигнала усиление падает. В результате большие сигналы будут восприниматься сетью без насыщения, а слабые сигналы будут проходить по сети без чрезмерного ослабления.

Цель обучения сети

Цель обучения нейросети при использовании алгоритма обратного распространения ошибки — это такая подстройка весов нейросети, которая позволит при приложении некоторого множества входов получить требуемое множество выходов нейронов (выходных нейронов). Можно назвать эти множества входов и выходов векторами. В процессе обучения предполагается, что для любого входного вектора существует целевой вектор, парный входному и задающий требуемый выход. Эту пару называют обучающей. Работая с нейросетями, мы обучаем их на многих парах.

Также можно сказать, что алгоритм использует стохастический градиентный спуск и продвигается в многомерном пространстве весов в направлении антиградиента, причём цель — это достижение минимума функции ошибки.

При практическом применении метода обучение продолжают не до максимально точной настройки нейросети на минимум функции ошибки, а пока не будет достигнуто довольно точное его приближение. С одной стороны, это даёт возможность уменьшить количество итераций обучения, с другой — избежать переобучения нейронной сети.

Пошаговая реализация метода обратного распространения ошибки

Необходимо выполнить следующие действия:
1. Инициализировать синаптические веса случайными маленькими значениями.
2. Выбрать из обучающего множества очередную обучающую пару; подать на вход сети входной вектор.
3. Выполнить вычисление выходных значений нейронной сети.
4. Посчитать разность между выходом нейросети и требуемым выходом (речь идёт о целевом векторе обучающей пары).
5. Скорректировать веса сети в целях минимизации ошибки.
6. Повторять для каждого вектора обучающего множества шаги 2-5, пока ошибка обучения нейронной сети на всём множестве не достигнет уровня, который является приемлемым.

Виды обучения сети по методу обратного распространения

Сегодня существует много модификаций алгоритма обратного распространения ошибки. Возможно обучение не «по шагам» (выходная ошибка вычисляется, веса корректируются на каждом примере), а «по эпохам» в offline-режиме (изменения весовых коэффициентов происходит после подачи на вход нейросети всех примеров обучающего множества, а ошибка обучения neural сети усредняется по всем примерам).

Обучение «по эпохам» более устойчиво к выбросам и аномальным значениям целевой переменной благодаря усреднению ошибки по многим примерам. Зато в данном случае увеличивается вероятность «застревания» в локальных минимумах. При обучении «по шагам» такая вероятность меньше, ведь применение отдельных примеров создаёт «шум», «выталкивающий» алгоритм обратного распространения из ям градиентного рельефа.

Преимущества и недостатки метода

К плюсам можно отнести простоту в реализации и устойчивость к выбросам и аномалиям в данных, и это основные преимущества. Но есть и минусы:
• неопределенно долгий процесс обучения;
• вероятность «паралича сети» (при больших значениях рабочая точка функции активации попадает в область насыщения сигмоиды, а производная величина приближается к 0, в результате чего коррекции весов почти не происходят, а процесс обучения «замирает»;
• алгоритм уязвим к попаданию в локальные минимумы функции ошибки.

Значение метода обратного распространения

Появление алгоритма стало знаковым событием и положительно отразилось на развитии нейросетей, ведь он реализует эффективный с точки зрения вычислительных процессов способ обучения многослойного персептрона. В то же самое время, было бы неправильным сказать, что алгоритм предлагает наиболее оптимальное решение всех потенциальных проблем. Зато он действительно развеял пессимизм относительно машинного обучения многослойных машин, который воцарился после публикации в 1969 году работы американского учёного с фамилией Минский.

Источники:
— «Алгоритм обратного распространения ошибки»;
— «Back propagation algorithm».

Применение алгоритма обратного распространения ошибки — один из известных методов, используемых для глубокого обучения нейронных сетей прямого распространения (такие сети ещё называют многослойными персептронами). Этот метод относят к методу обучения с учителем, поэтому требуется задавать в обучающих примерах целевые значения. В этой статье мы рассмотрим, что собой представляет метод обратного распространения ошибки, как он реализуется, каковы его плюсы и минусы.

Сегодня нейронные сети прямого распространения используются для решения множества сложных задач. Если говорить об обучении нейронных сетей методом обратного распространения, то тут пользуются двумя проходами по всем слоям нейросети: прямым и обратным. При выполнении прямого прохода осуществляется подача входного вектора на входной слой сети, после чего происходит распространение по нейронной сети от слоя к слою. В итоге должна осуществляться генерация набора выходных сигналов — именно он, по сути, является реакцией нейронной сети на этот входной образ. При прямом проходе все синаптические веса нейросети фиксированы. При обратном проходе все синаптические веса настраиваются согласно правил коррекции ошибок, когда фактический выход нейронной сети вычитается из желаемого, что приводит к формированию сигнала ошибки. Такой сигнал в дальнейшем распространяется по сети, причём направление распространения обратно направлению синаптических связей. Именно поэтому соответствующий метод и называют алгоритмом с обратно распространённой ошибкой. Синаптические веса настраивают с целью наибольшего приближения выходного сигнала нейронной сети к желаемому.

Общее описание алгоритма обратного распространения ошибки

К примеру, нам надо обучить нейронную сеть по аналогии с той, что представлена на картинке ниже. Естественно, задачу следует выполнить, применяя алгоритм обратного распространения ошибки:

4-20219-e537a8.png

2-20219-7f9b72.png

В многослойных персептронах в роли активационной функции обычно применяют сигмоидальную активационную функция, в нашем случае — логистическую. Формула:

3-20219-2ac7f4.png

Причём «альфа» здесь означает параметр наклона сигмоидальной функции. Меняя его, мы получаем возможность строить функции с разной крутизной.

Сигмоид может сужать диапазон изменения таким образом, чтобы значение OUT лежало между нулем и единицей. Нейронные многослойные сети характеризуются более высокой представляющей мощностью, если сравнивать их с однослойными, но это утверждение справедливо лишь в случае нелинейности. Нужную нелинейность и обеспечивает сжимающая функция. Но на практике существует много функций, которые можно использовать. Говоря о работе алгоритма обратного распространения ошибки, скажем, что для этого нужно лишь, чтобы функция была везде дифференцируема, а данному требованию как раз и удовлетворяет сигмоид. У него есть и дополнительное преимущество — автоматический контроль усиления. Если речь идёт о слабых сигналах (OUT близко к нулю), то кривая «вход-выход» характеризуется сильным наклоном, дающим большое усиление. При увеличении сигнала усиление падает. В результате большие сигналы будут восприниматься сетью без насыщения, а слабые сигналы будут проходить по сети без чрезмерного ослабления.

Цель обучения сети

Цель обучения нейросети при использовании алгоритма обратного распространения ошибки — это такая подстройка весов нейросети, которая позволит при приложении некоторого множества входов получить требуемое множество выходов нейронов (выходных нейронов). Можно назвать эти множества входов и выходов векторами. В процессе обучения предполагается, что для любого входного вектора существует целевой вектор, парный входному и задающий требуемый выход. Эту пару называют обучающей. Работая с нейросетями, мы обучаем их на многих парах.

Также можно сказать, что алгоритм использует стохастический градиентный спуск и продвигается в многомерном пространстве весов в направлении антиградиента, причём цель — это достижение минимума функции ошибки.

При практическом применении метода обучение продолжают не до максимально точной настройки нейросети на минимум функции ошибки, а пока не будет достигнуто довольно точное его приближение. С одной стороны, это даёт возможность уменьшить количество итераций обучения, с другой — избежать переобучения нейронной сети.

Пошаговая реализация метода обратного распространения ошибки

Необходимо выполнить следующие действия:
1. Инициализировать синаптические веса случайными маленькими значениями.
2. Выбрать из обучающего множества очередную обучающую пару; подать на вход сети входной вектор.
3. Выполнить вычисление выходных значений нейронной сети.
4. Посчитать разность между выходом нейросети и требуемым выходом (речь идёт о целевом векторе обучающей пары).
5. Скорректировать веса сети в целях минимизации ошибки.
6. Повторять для каждого вектора обучающего множества шаги 2-5, пока ошибка обучения нейронной сети на всём множестве не достигнет уровня, который является приемлемым.

Виды обучения сети по методу обратного распространения

Сегодня существует много модификаций алгоритма обратного распространения ошибки. Возможно обучение не «по шагам» (выходная ошибка вычисляется, веса корректируются на каждом примере), а «по эпохам» в offline-режиме (изменения весовых коэффициентов происходит после подачи на вход нейросети всех примеров обучающего множества, а ошибка обучения neural сети усредняется по всем примерам).

Обучение «по эпохам» более устойчиво к выбросам и аномальным значениям целевой переменной благодаря усреднению ошибки по многим примерам. Зато в данном случае увеличивается вероятность «застревания» в локальных минимумах. При обучении «по шагам» такая вероятность меньше, ведь применение отдельных примеров создаёт «шум», «выталкивающий» алгоритм обратного распространения из ям градиентного рельефа.

Преимущества и недостатки метода

К плюсам можно отнести простоту в реализации и устойчивость к выбросам и аномалиям в данных, и это основные преимущества. Но есть и минусы:
• неопределенно долгий процесс обучения;
• вероятность «паралича сети» (при больших значениях рабочая точка функции активации попадает в область насыщения сигмоиды, а производная величина приближается к 0, в результате чего коррекции весов почти не происходят, а процесс обучения «замирает»;
• алгоритм уязвим к попаданию в локальные минимумы функции ошибки.

Значение метода обратного распространения

Появление алгоритма стало знаковым событием и положительно отразилось на развитии нейросетей, ведь он реализует эффективный с точки зрения вычислительных процессов способ обучения многослойного персептрона. В то же самое время, было бы неправильным сказать, что алгоритм предлагает наиболее оптимальное решение всех потенциальных проблем. Зато он действительно развеял пессимизм относительно машинного обучения многослойных машин, который воцарился после публикации в 1969 году работы американского учёного с фамилией Минский.

Источники:
— «Алгоритм обратного распространения ошибки»;
— «Back propagation algorithm».

8.1 Многослойные нейронные сети. Структура

Обсудим алгоритм
обратного распространения ошибки,
который позволяет обучать многослойные
нейронные сети. Этот алгоритм считается
наиболее известным и чаще всего
применяемым в искусственных нейронных
сетях.

На
рисунке 8.1 представлена многослойная
нейронная сеть, состоящая из
слоев.

Рисунок
8.1 – Многослойная нейронная сеть

В
каждом слое расположено
элементов, ,
обозначаемых ,
.
Элементы
будем называть нейронами с нелинейной
функцией активации на выходе. Обсуждаемая
нейронная сеть имеет
входов, на которые подаются сигналы
,
записываемые в векторной форме как

,

(8.1)

Выходной
сигнал i-го
нейрона в
слое обозначается ,
,
.

На
рисунке 8.2 показана детальная структура
i-го
нейрона в
слое.

Нейрон

имеет
входов,
образующих вектор

(8.2)

причем

для
и .
Обратим внимание на факт, что входной
сигнал нейрона
связан с выходным сигналом
слоя следующим образом:

(8.3)

На
рисунке 8.2
обозначает вес связи i-го
нейрона, ,
расположенного в
слое, которая соединяет этот нейрон с

входным сигналом ,
.

Рисунок
8.2 – Структура нейрона

8.2 Вывод основных формул алгоритма обратного распространения ошибки

Вектор
весов нейрона
обозначим

,
,

(8.4)

Выходной
сигнал нейрона
в n
момент времени,
определяется как

,

(8.5)

причем

(8.6)

Отметим,
что выходные сигналы нейронов в L
слое

(8.7)

одновременно
являются выходными сигналами всей сети.
Они сравниваются с так называемыми
эталонными сигналами сети

(8.8)

в результате чего
получаем погрешность

,
.

(8.9)

Можно
сформулировать меру погрешности,
основанную на сравнении сигналов (8.7) и
(8.8), в виде суммы квадратов разностей
(8.9), т.е.

(8.10)

Из
выражений (8.5) и (8.6) следует, что мера
погрешности (8.10) — это функция от весов
сети. Обучение сети основано на адаптивной
коррекции всех весов
таким образом, чтобы минимизировать ее
значение. Для коррекции произвольного
веса можно использовать правило
наискорейшего спуска, которое принимает
вид

(8.11)

где
константа
определяет величину шага коррекции.
Обратим внимание, что

(1.41)

Если ввести
обозначение

(8.13)

то получим равенство

(8.14)

При
этом алгоритм (8.11) принимает вид

(8.15)

Способ
расчета значения ,
заданного выражением (8.13), зависит от
номера слоя. Для последнего слоя получаем

(8.16)

Для
произвольного слоя
получаем

(8.17)

Определим
погрешность в

(не последнем) слое для
-го
нейрона в виде

(8.18)

Если
подставить выражение (8.18) в формулу
(8.17), то получим

(8.19)

В результате
алгоритм обратного распространения
ошибки можно записать в виде

(8.20)

(8.21)

(8.22)

(8.23)

Название
алгоритма связано со способом расчета
погрешностей в конкретных слоях. Вначале
рассчитываются погрешности в последнем
слое (на основе выходных и эталонных
сигналов), далее — в предпоследнем и так
вплоть до первого слоя. Начальные
значения весов, образующих сеть,
выбираются случайным образом и, как
правило, устанавливаются близкими к
нулю. Шаг коррекции
чаще всего принимает большие значения
(близкие единице) на начальных этапах
процесса обучения, но впоследствии его
следует уменьшать по мере того как веса
приближаются к некоторым заранее
определенным значениям. В литературе,
посвященной нейронным сетям, рекомендуются
различные модификации алгоритма
обратного распространения ошибки. Одна
из наиболее известных модификаций
заключается во введении в рекурсию
(8.23) дополнительного члена, называемого
моментом:

(8.24)

в
котором параметр .
Экспериментальные исследования
показывают, что введение момента ускоряет
сходимость алгоритма обратного
распространения ошибки.

Контрольные вопросы

  1. Как выглядит многослойная
    нейронная сеть?

  2. Напишите основные функции
    активации, применяемые в нейронных
    сетях?

  3. Напишите основные формулы
    алгоритма обратного распространения
    ошибки?

  4. Назовите основные модификации
    алгоритма обратного распространения
    ошибки?

  5. По какому алгоритму происходит
    обучение персептрона?

Соседние файлы в папке Методы оптимизации

  • #
  • #

Нейронные сети обучаются с помощью тех или иных модификаций градиентного спуска, а чтобы применять его, нужно уметь эффективно вычислять градиенты функции потерь по всем обучающим параметрам. Казалось бы, для какого-нибудь запутанного вычислительного графа это может быть очень сложной задачей, но на помощь спешит метод обратного распространения ошибки.

Открытие метода обратного распространения ошибки стало одним из наиболее значимых событий в области искусственного интеллекта. В актуальном виде он был предложен в 1986 году Дэвидом Э. Румельхартом, Джеффри Э. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно красноярскими математиками С. И. Барцевым и В. А. Охониным. С тех пор для нахождения градиентов параметров нейронной сети используется метод вычисления производной сложной функции, и оценка градиентов параметров сети стала хоть сложной инженерной задачей, но уже не искусством. Несмотря на простоту используемого математического аппарата, появление этого метода привело к значительному скачку в развитии искусственных нейронных сетей.

Суть метода можно записать одной формулой, тривиально следующей из формулы производной сложной функции: если $f(x) = g_m(g_{m-1}(ldots (g_1(x)) ldots))$, то $frac{partial f}{partial x} = frac{partial g_m}{partial g_{m-1}}frac{partial g_{m-1}}{partial g_{m-2}}ldots frac{partial g_2}{partial g_1}frac{partial g_1}{partial x}$. Уже сейчас мы видим, что градиенты можно вычислять последовательно, в ходе одного обратного прохода, начиная с $frac{partial g_m}{partial g_{m-1}}$ и умножая каждый раз на частные производные предыдущего слоя.

Backpropagation в одномерном случае

В одномерном случае всё выглядит особенно просто. Пусть $w_0$ — переменная, по которой мы хотим продифференцировать, причём сложная функция имеет вид

$$f(w_0) = g_m(g_{m-1}(ldots g_1(w_0)ldots)),$$

где все $g_i$ скалярные. Тогда

$$f'(w_0) = g_m'(g_{m-1}(ldots g_1(w_0)ldots))cdot g’_{m-1}(g_{m-2}(ldots g_1(w_0)ldots))cdotldots cdot g’_1(w_0)$$

Суть этой формулы такова. Если мы уже совершили forward pass, то есть уже знаем

$$g_1(w_0), g_2(g_1(w_0)),ldots,g_{m-1}(ldots g_1(w_0)ldots),$$

то мы действуем следующим образом:

  • берём производную $g_m$ в точке $g_{m-1}(ldots g_1(w_0)ldots)$;

  • умножаем на производную $g_{m-1}$ в точке $g_{m-2}(ldots g_1(w_0)ldots)$;

  • и так далее, пока не дойдём до производной $g_1$ в точке $w_0$.

Проиллюстрируем это на картинке, расписав по шагам дифференцирование по весам $w_i$ функции потерь логистической регрессии на одном объекте (то есть для батча размера 1):

17_1.png

Собирая все множители вместе, получаем:

$$frac{partial f}{partial w_0} = (-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_1} = x_1cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_2} = x_2cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

Таким образом, мы видим, что сперва совершается forward pass для вычисления всех промежуточных значений (и да, все промежуточные представления нужно будет хранить в памяти), а потом запускается backward pass, на котором в один проход вычисляются все градиенты.

Почему же нельзя просто пойти и начать везде вычислять производные?

В главе, посвящённой матричным дифференцированиям, мы поднимаем вопрос о том, что вычислять частные производные по отдельности — это зло, лучше пользоваться матричными вычислениями. Но есть и ещё одна причина: даже и с матричной производной в принципе не всегда хочется иметь дело. Рассмотрим простой пример. Допустим, что $X^r$ и $X^{r+1}$ — два последовательных промежуточных представления $Ntimes M$ и $Ntimes K$, связанных функцией $X^{r+1} = f^{r+1}(X^r)$. Предположим, что мы как-то посчитали производную $frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$ функции потерь $mathcal{L}$, тогда

$$frac{partialmathcal{L}}{partial X^{r}_{st}} = sum_{i,j}frac{partial f^{r+1}_{ij}}{partial X^{r}_{st}}frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$$

И мы видим, что, хотя оба градиента $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ и $frac{partialmathcal{L}}{partial X_{st}^{r}}$ являются просто матрицами, в ходе вычислений возникает «четырёхмерный кубик» $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, даже хранить который весьма болезненно: уж больно много памяти он требует ($N^2MK$ по сравнению с безобидными $NM + NK$, требуемыми для хранения градиентов). Поэтому хочется промежуточные производные $frac{partial f^{r+1}}{partial X^{r}}$ рассматривать не как вычисляемые объекты $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, а как преобразования, которые превращают $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ в $frac{partialmathcal{L}}{partial X_{st}^{r}}$. Целью следующих глав будет именно это: понять, как преобразуется градиент в ходе error backpropagation при переходе через тот или иной слой.

  Вы спросите себя: надо ли мне сейчас пойти и прочитать главу учебника про матричное дифференцирование?

Встречный вопрос. Найдите производную функции по вектору $x$:

$$f(x) = x^TAx, Ain Mat_{n}{mathbb{R}}text{ — матрица размера }ntimes n$$

А как всё поменяется, если $A$ тоже зависит от $x$? Чему равен градиент функции, если $A$ является скаляром? Если вы готовы прямо сейчас взять ручку и бумагу и посчитать всё, то вам, вероятно, не надо читать про матричные дифференцирования. Но мы советуем всё-таки заглянуть в эту главу, если обозначения, которые мы будем дальше использовать, покажутся вам непонятными: единой нотации для матричных дифференцирований человечество пока, увы, не изобрело, и переводить с одной на другую не всегда легко.

Мы же сразу перейдём к интересующей нас вещи: к вычислению градиентов сложных функций.

Градиент сложной функции

Напомним, что формула производной сложной функции выглядит следующим образом:

$$left[D_{x_0} (color{#5002A7}{u} circ color{#4CB9C0}{v}) right](h) = color{#5002A7}{left[D_{v(x_0)} u right]} left( color{#4CB9C0}{left[D_{x_0} vright]} (h)right)$$

Теперь разберёмся с градиентами. Пусть $f(x) = g(h(x))$ – скалярная функция. Тогда

$$left[D_{x_0} f right] (x-x_0) = langlenabla_{x_0} f, x-x_0rangle.$$

С другой стороны,

$$left[D_{h(x_0)} g right] left(left[D_{x_0}h right] (x-x_0)right) = langlenabla_{h_{x_0}} g, left[D_{x_0} hright] (x-x_0)rangle = langleleft[D_{x_0} hright]^* nabla_{h(x_0)} g, x-x_0rangle.$$

То есть $color{#FFC100}{nabla_{x_0} f} = color{#348FEA}{left[D_{x_0} h right]}^* color{#FFC100}{nabla_{h(x_0)}}g$ — применение сопряжённого к $D_{x_0} h$ линейного отображения к вектору $nabla_{h(x_0)} g$.

Эта формула — сердце механизма обратного распространения ошибки. Она говорит следующее: если мы каким-то образом получили градиент функции потерь по переменным из некоторого промежуточного представления $X^k$ нейронной сети и при этом знаем, как преобразуется градиент при проходе через слой $f^k$ между $X^{k-1}$ и $X^k$ (то есть как выглядит сопряжённое к дифференциалу слоя между ними отображение), то мы сразу же находим градиент и по переменным из $X^{k-1}$:

17_2.png

Таким образом слой за слоем мы посчитаем градиенты по всем $X^i$ вплоть до самых первых слоёв.

Далее мы разберёмся, как именно преобразуются градиенты при переходе через некоторые распространённые слои.

Градиенты для типичных слоёв

Рассмотрим несколько важных примеров.

Примеры

  1. $f(x) = u(v(x))$, где $x$ — вектор, а $v(x)$ – поэлементное применение $v$:

    $$vbegin{pmatrix}
    x_1
    vdots
    x_N
    end{pmatrix}
    = begin{pmatrix}
    v(x_1)
    vdots
    v(x_N)
    end{pmatrix}$$

    Тогда, как мы знаем,

    $$left[D_{x_0} fright] (h) = langlenabla_{x_0} f, hrangle = left[nabla_{x_0} fright]^T h.$$

    Следовательно,

    $$begin{multline*}
    left[D_{v(x_0)} uright] left( left[ D_{x_0} vright] (h)right) = left[nabla_{v(x_0)} uright]^T left(v'(x_0) odot hright) =[0.1cm]
    = sumlimits_i left[nabla_{v(x_0)} uright]_i v'(x_{0i})h_i
    = langleleft[nabla_{v(x_0)} uright] odot v'(x_0), hrangle.
    end{multline*},$$

    где $odot$ означает поэлементное перемножение. Окончательно получаем

    $$color{#348FEA}{nabla_{x_0} f = left[nabla_{v(x_0)}uright] odot v'(x_0) = v'(x_0) odot left[nabla_{v(x_0)} uright]}$$

    Отметим, что если $x$ и $h(x)$ — это просто векторы, то мы могли бы вычислять всё и по формуле $frac{partial f}{partial x_i} = sum_jbig(frac{partial z_j}{partial x_i}big)cdotbig(frac{partial h}{partial z_j}big)$. В этом случае матрица $big(frac{partial z_j}{partial x_i}big)$ была бы диагональной (так как $z_j$ зависит только от $x_j$: ведь $h$ берётся поэлементно), и матричное умножение приводило бы к тому же результату. Однако если $x$ и $h(x)$ — матрицы, то $big(frac{partial z_j}{partial x_i}big)$ представлялась бы уже «четырёхмерным кубиком», и работать с ним было бы ужасно неудобно.

  2. $f(X) = g(XW)$, где $X$ и $W$ — матрицы. Как мы знаем,

    $$left[D_{X_0} f right] (X-X_0) = text{tr}, left(left[nabla_{X_0} fright]^T (X-X_0)right).$$

    Тогда

    $$begin{multline*}
    left[ D_{X_0W} g right] left(left[D_{X_0} left( ast Wright)right] (H)right) =
    left[ D_{X_0W} g right] left(HWright)=
    = text{tr}, left( left[nabla_{X_0W} g right]^T cdot (H) W right) =
    =
    text{tr} , left(W left[nabla_{X_0W} (g) right]^T cdot (H)right) = text{tr} , left( left[left[nabla_{X_0W} gright] W^Tright]^T (H)right)
    end{multline*}$$

    Здесь через $ast W$ мы обозначили отображение $Y hookrightarrow YW$, а в предпоследнем переходе использовалось следующее свойство следа:

    $$
    text{tr} , (A B C) = text{tr} , (C A B),
    $$

    где $A, B, C$ — произвольные матрицы подходящих размеров (то есть допускающие перемножение в обоих приведённых порядках). Следовательно, получаем

    $$color{#348FEA}{nabla_{X_0} f = left[nabla_{X_0W} (g) right] cdot W^T}$$

  3. $f(W) = g(XW)$, где $W$ и $X$ — матрицы. Для приращения $H = W — W_0$ имеем

    $$
    left[D_{W_0} f right] (H) = text{tr} , left( left[nabla_{W_0} f right]^T (H)right)
    $$

    Тогда

    $$ begin{multline*}
    left[D_{XW_0} g right] left( left[D_{W_0} left(X astright) right] (H)right) = left[D_{XW_0} g right] left( XH right) =
    = text{tr} , left( left[nabla_{XW_0} g right]^T cdot X (H)right) =
    text{tr}, left(left[X^T left[nabla_{XW_0} g right] right]^T (H)right)
    end{multline*} $$

    Здесь через $X ast$ обозначено отображение $Y hookrightarrow XY$. Значит,

    $$color{#348FEA}{nabla_{X_0} f = X^T cdot left[nabla_{XW_0} (g)right]}$$

  4. $f(X) = g(softmax(X))$, где $X$ — матрица $Ntimes K$, а $softmax$ — функция, которая вычисляется построчно, причём для каждой строки $x$

    $$softmax(x) = left(frac{e^{x_1}}{sum_te^{x_t}},ldots,frac{e^{x_K}}{sum_te^{x_t}}right)$$

    В этом примере нам будет удобно воспользоваться формализмом с частными производными. Сначала вычислим $frac{partial s_l}{partial x_j}$ для одной строки $x$, где через $s_l$ мы для краткости обозначим $softmax(x)_l = frac{e^{x_l}} {sum_te^{x_t}}$. Нетрудно проверить, что

    $$frac{partial s_l}{partial x_j} = begin{cases}
    s_j(1 — s_j), & j = l,
    -s_ls_j, & jne l
    end{cases}$$

    Так как softmax вычисляется независимо от каждой строчки, то

    $$frac{partial s_{rl}}{partial x_{ij}} = begin{cases}
    s_{ij}(1 — s_{ij}), & r=i, j = l,
    -s_{il}s_{ij}, & r = i, jne l,
    0, & rne i
    end{cases},$$

    где через $s_{rl}$ мы обозначили для краткости $softmax(X)_{rl}$.

    Теперь пусть $nabla_{rl} = nabla g = frac{partialmathcal{L}}{partial s_{rl}}$ (пришедший со следующего слоя, уже известный градиент). Тогда

    $$frac{partialmathcal{L}}{partial x_{ij}} = sum_{r,l}frac{partial s_{rl}}{partial x_{ij}} nabla_{rl}$$

    Так как $frac{partial s_{rl}}{partial x_{ij}} = 0$ при $rne i$, мы можем убрать суммирование по $r$:

    $$ldots = sum_{l}frac{partial s_{il}}{partial x_{ij}} nabla_{il} = -s_{i1}s_{ij}nabla_{i1} — ldots + s_{ij}(1 — s_{ij})nabla_{ij}-ldots — s_{iK}s_{ij}nabla_{iK} =$$

    $$= -s_{ij}sum_t s_{it}nabla_{it} + s_{ij}nabla_{ij}$$

    Таким образом, если мы хотим продифференцировать $f$ в какой-то конкретной точке $X_0$, то, смешивая математические обозначения с нотацией Python, мы можем записать:

    $$begin{multline*}
    color{#348FEA}{nabla_{X_0}f =}
    color{#348FEA}{= -softmax(X_0) odot text{sum}left(
    softmax(X_0)odotnabla_{softmax(X_0)}g, text{ axis = 1}
    right) +}
    color{#348FEA}{softmax(X_0)odot nabla_{softmax(X_0)}g}
    end{multline*}
    $$

Backpropagation в общем виде

Подытожим предыдущее обсуждение, описав алгоритм error backpropagation (алгоритм обратного распространения ошибки). Допустим, у нас есть текущие значения весов $W^i_0$ и мы хотим совершить шаг SGD по мини-батчу $X$. Мы должны сделать следующее:

  1. Совершить forward pass, вычислив и запомнив все промежуточные представления $X = X^0, X^1, ldots, X^m = widehat{y}$.
  2. Вычислить все градиенты с помощью backward pass.
  3. С помощью полученных градиентов совершить шаг SGD.

Проиллюстрируем алгоритм на примере двуслойной нейронной сети со скалярным output’ом. Для простоты опустим свободные члены в линейных слоях.

17_3.png Обучаемые параметры – матрицы $U$ и $W$. Как найти градиенты по ним в точке $U_0, W_0$?

$$nabla_{W_0}mathcal{L} = nabla_{W_0}{left({vphantom{frac12}mathcal{L}circ hcircleft[Wmapsto g(XU_0)Wright]}right)}=$$

$$=g(XU_0)^Tnabla_{g(XU_0)W_0}(mathcal{L}circ h) = underbrace{g(XU_0)^T}_{ktimes N}cdot
left[vphantom{frac12}underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes 1}odot
underbrace{nabla_{hleft(vphantom{int_0^1}g(XU_0)W_0right)}mathcal{L}}_{Ntimes 1}right]$$

Итого матрица $ktimes 1$, как и $W_0$

$$nabla_{U_0}mathcal{L} = nabla_{U_0}left(vphantom{frac12}
mathcal{L}circ hcircleft[Ymapsto YW_0right]circ gcircleft[ Umapsto XUright]
right)=$$

$$=X^Tcdotnabla_{XU^0}left(vphantom{frac12}mathcal{L}circ hcirc [Ymapsto YW_0]circ gright) =$$

$$=X^Tcdotleft(vphantom{frac12}g'(XU_0)odot
nabla_{g(XU_0)}left[vphantom{in_0^1}mathcal{L}circ hcirc[Ymapsto YW_0right]
right)$$

$$=ldots = underset{Dtimes N}{X^T}cdotleft(vphantom{frac12}
underbrace{g'(XU_0)}_{Ntimes K}odot
underbrace{left[vphantom{int_0^1}left(
underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes1}odotunderbrace{nabla_{h(vphantom{int_0^1}gleft(XU_0right)W_0)}mathcal{L}}_{Ntimes 1}
right)cdot underbrace{W^T}_{1times K}right]}_{Ntimes K}
right)$$

Итого $Dtimes K$, как и $U_0$

Схематически это можно представить следующим образом:

17_4.gif

Backpropagation для двуслойной нейронной сети

Если вы не уследили за вычислениями в предыдущем примере, давайте более подробно разберём его чуть более конкретную версию (для $g = h = sigma$)Рассмотрим двуслойную нейронную сеть для классификации. Мы уже встречали ее ранее при рассмотрении линейно неразделимой выборки. Предсказания получаются следующим образом:

$$
widehat{y} = sigma(X^1 W^2) = sigmaBig(big(sigma(X^0 W^1 )big) W^2 Big).
$$

Пусть $W^1_0$ и $W^2_0$ — текущее приближение матриц весов. Мы хотим совершить шаг по градиенту функции потерь, и для этого мы должны вычислить её градиенты по $W^1$ и $W^2$ в точке $(W^1_0, W^2_0)$.

Прежде всего мы совершаем forward pass, в ходе которого мы должны запомнить все промежуточные представления: $X^1 = X^0 W^1_0$, $X^2 = sigma(X^0 W^1_0)$, $X^3 = sigma(X^0 W^1_0) W^2_0$, $X^4 = sigma(sigma(X^0 W^1_0) W^2_0) = widehat{y}$. Они понадобятся нам дальше.

Для полученных предсказаний вычисляется значение функции потерь:

$$
l = mathcal{L}(y, widehat{y}) = y log(widehat{y}) + (1-y) log(1-widehat{y}).
$$

Дальше мы шаг за шагом будем находить производные по переменным из всё более глубоких слоёв.

  1. Градиент $mathcal{L}$ по предсказаниям имеет вид

    $$
    nabla_{widehat{y}}l = frac{y}{widehat{y}} — frac{1 — y}{1 — widehat{y}} = frac{y — widehat{y}}{widehat{y} (1 — widehat{y})},
    $$

    где, напомним, $ widehat{y} = sigma(X^3) = sigmaBig(big(sigma(X^0 W^1_0 )big) W^2_0 Big)$ (обратите внимание на то, что $W^1_0$ и $W^2_0$ тут именно те, из которых мы делаем градиентный шаг).

  2. Следующий слой — поэлементное взятие $sigma$. Как мы помним, при переходе через него градиент поэлементно умножается на производную $sigma$, в которую подставлено предыдущее промежуточное представление:

    $$
    nabla_{X^3}l = sigma'(X^3)odotnabla_{widehat{y}}l = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — widehat{y}}{widehat{y} (1 — widehat{y})} =
    $$

    $$
    = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — sigma(X^3)}{sigma(X^3) (1 — sigma(X^3))} =
    y — sigma(X^3)
    $$

  3. Следующий слой — умножение на $W^2_0$. В этот момент мы найдём градиент как по $W^2$, так и по $X^2$. При переходе через умножение на матрицу градиент, как мы помним, умножается с той же стороны на транспонированную матрицу, а значит:

    $$
    color{blue}{nabla_{W^2_0}l} = (X^2)^Tcdot nabla_{X^3}l = (X^2)^Tcdot(y — sigma(X^3)) =
    $$

    $$
    = color{blue}{left( sigma(X^0W^1_0) right)^T cdot (y — sigma(sigma(X^0W^1_0)W^2_0))}
    $$

    Аналогичным образом

    $$
    nabla_{X^2}l = nabla_{X^3}lcdot (W^2_0)^T = (y — sigma(X^3))cdot (W^2_0)^T =
    $$

    $$
    = (y — sigma(X^2W_0^2))cdot (W^2_0)^T
    $$

  4. Следующий слой — снова взятие $sigma$.

    $$
    nabla_{X^1}l = sigma'(X^1)odotnabla_{X^2}l = sigma(X^1)left( 1 — sigma(X^1) right) odot left( (y — sigma(X^2W_0^2))cdot (W^2_0)^T right) =
    $$

    $$
    = sigma(X^1)left( 1 — sigma(X^1) right) odotleft( (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^T right)
    $$

  5. Наконец, последний слой — это умножение $X^0$ на $W^1_0$. Тут мы дифференцируем только по $W^1$:

    $$
    color{blue}{nabla_{W^1_0}l} = (X^0)^Tcdot nabla_{X^1}l = (X^0)^Tcdot big( sigma(X^1) left( 1 — sigma(X^1) right) odot (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^Tbig) =
    $$

    $$
    = color{blue}{(X^0)^Tcdotbig(sigma(X^0W^1_0)left( 1 — sigma(X^0W^1_0) right) odot (y — sigma(sigma(X^0W^1_0)W_0^2))cdot (W^2_0)^Tbig) }
    $$

Итоговые формулы для градиентов получились страшноватыми, но они были получены друг из друга итеративно с помощью очень простых операций: матричного и поэлементного умножения, в которые порой подставлялись значения заранее вычисленных промежуточных представлений.

Автоматизация и autograd

Итак, чтобы нейросеть обучалась, достаточно для любого слоя $f^k: X^{k-1}mapsto X^k$ с параметрами $W^k$ уметь:

  • превращать $nabla_{X^k_0}mathcal{L}$ в $nabla_{X^{k-1}_0}mathcal{L}$ (градиент по выходу в градиент по входу);
  • считать градиент по его параметрам $nabla_{W^k_0}mathcal{L}$.

При этом слою совершенно не надо знать, что происходит вокруг. То есть слой действительно может быть запрограммирован как отдельная сущность, умеющая внутри себя делать forward pass и backward pass, после чего слои механически, как кубики в конструкторе, собираются в большую сеть, которая сможет работать как одно целое.

Более того, во многих случаях авторы библиотек для глубинного обучения уже о вас позаботились и создали средства для автоматического дифференцирования выражений (autograd). Поэтому, программируя нейросеть, вы почти всегда можете думать только о forward-проходе, прямом преобразовании данных, предоставив библиотеке дифференцировать всё самостоятельно. Это делает код нейросетей весьма понятным и выразительным (да, в реальности он тоже бывает большим и страшным, но сравните на досуге код какой-нибудь разухабистой нейросети и код градиентного бустинга на решающих деревьях и почувствуйте разницу).

Но это лишь начало

Метод обратного распространения ошибки позволяет удобно посчитать градиенты, но дальше с ними что-то надо делать, и старый добрый SGD едва ли справится с обучением современной сетки. Так что же делать? О некоторых приёмах мы расскажем в следующей главе.

This article is about the computer algorithm. For the biological process, see neural backpropagation.

Backpropagation can also refer to the way the result of a playout is propagated up the search tree in Monte Carlo tree search.

In machine learning, backpropagation (backprop,[1] BP) is a widely used algorithm for training feedforward artificial neural networks. Generalizations of backpropagation exist for other artificial neural networks (ANNs), and for functions generally. These classes of algorithms are all referred to generically as «backpropagation».[2] In fitting a neural network, backpropagation computes the gradient of the loss function with respect to the weights of the network for a single input–output example, and does so efficiently, unlike a naive direct computation of the gradient with respect to each weight individually. This efficiency makes it feasible to use gradient methods for training multilayer networks, updating weights to minimize loss; gradient descent, or variants such as stochastic gradient descent, are commonly used. The backpropagation algorithm works by computing the gradient of the loss function with respect to each weight by the chain rule, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this is an example of dynamic programming.[3]

The term backpropagation strictly refers only to the algorithm for computing the gradient, not how the gradient is used; however, the term is often used loosely to refer to the entire learning algorithm, including how the gradient is used, such as by stochastic gradient descent.[4] Backpropagation generalizes the gradient computation in the delta rule, which is the single-layer version of backpropagation, and is in turn generalized by automatic differentiation, where backpropagation is a special case of reverse accumulation (or «reverse mode»).[5] The term backpropagation and its general use in neural networks was announced in Rumelhart, Hinton & Williams (1986a), then elaborated and popularized in Rumelhart, Hinton & Williams (1986b), but the technique was independently rediscovered many times, and had many predecessors dating to the 1960s; see § History.[6] A modern overview is given in the deep learning textbook by Goodfellow, Bengio & Courville (2016).[7]

Overview[edit]

Backpropagation computes the gradient in weight space of a feedforward neural network, with respect to a loss function. Denote:

  • x: input (vector of features)
  • y: target output
    For classification, output will be a vector of class probabilities (e.g., {displaystyle (0.1,0.7,0.2)}, and target output is a specific class, encoded by the one-hot/dummy variable (e.g., (0,1,0)).
  • C: loss function or «cost function»[a]
    For classification, this is usually cross entropy (XC, log loss), while for regression it is usually squared error loss (SEL).
  • L: the number of layers
  • {displaystyle W^{l}=(w_{jk}^{l})}: the weights between layer {displaystyle l-1} and l, where {displaystyle w_{jk}^{l}} is the weight between the k-th node in layer {displaystyle l-1} and the j-th node in layer l[b]
  • {displaystyle f^{l}}: activation functions at layer l
    For classification the last layer is usually the logistic function for binary classification, and softmax (softargmax) for multi-class classification, while for the hidden layers this was traditionally a sigmoid function (logistic function or others) on each node (coordinate), but today is more varied, with rectifier (ramp, ReLU) being common.

In the derivation of backpropagation, other intermediate quantities are used; they are introduced as needed below. Bias terms are not treated specially, as they correspond to a weight with a fixed input of 1. For the purpose of backpropagation, the specific loss function and activation functions do not matter, as long as they and their derivatives can be evaluated efficiently. Traditional activation functions include but are not limited to sigmoid, tanh, and ReLU. Since, swish,[8] mish,[9] and other activation functions were proposed as well.

The overall network is a combination of function composition and matrix multiplication:

{displaystyle g(x):=f^{L}(W^{L}f^{L-1}(W^{L-1}cdots f^{1}(W^{1}x)cdots ))}

For a training set there will be a set of input–output pairs, {displaystyle left{(x_{i},y_{i})right}}. For each input–output pair (x_{i},y_{i}) in the training set, the loss of the model on that pair is the cost of the difference between the predicted output {displaystyle g(x_{i})} and the target output y_{i}:

{displaystyle C(y_{i},g(x_{i}))}

Note the distinction: during model evaluation, the weights are fixed, while the inputs vary (and the target output may be unknown), and the network ends with the output layer (it does not include the loss function). During model training, the input–output pair is fixed, while the weights vary, and the network ends with the loss function.

Backpropagation computes the gradient for a fixed input–output pair (x_{i},y_{i}), where the weights {displaystyle w_{jk}^{l}} can vary. Each individual component of the gradient, {displaystyle partial C/partial w_{jk}^{l},} can be computed by the chain rule; however, doing this separately for each weight is inefficient. Backpropagation efficiently computes the gradient by avoiding duplicate calculations and not computing unnecessary intermediate values, by computing the gradient of each layer – specifically, the gradient of the weighted input of each layer, denoted by {displaystyle delta ^{l}} – from back to front.

Informally, the key point is that since the only way a weight in {displaystyle W^{l}} affects the loss is through its effect on the next layer, and it does so linearly, {displaystyle delta ^{l}} are the only data you need to compute the gradients of the weights at layer l, and then you can compute the previous layer {displaystyle delta ^{l-1}} and repeat recursively. This avoids inefficiency in two ways. Firstly, it avoids duplication because when computing the gradient at layer l, you do not need to recompute all the derivatives on later layers {displaystyle l+1,l+2,ldots } each time. Secondly, it avoids unnecessary intermediate calculations because at each stage it directly computes the gradient of the weights with respect to the ultimate output (the loss), rather than unnecessarily computing the derivatives of the values of hidden layers with respect to changes in weights {displaystyle partial a_{j'}^{l'}/partial w_{jk}^{l}}.

Backpropagation can be expressed for simple feedforward networks in terms of matrix multiplication, or more generally in terms of the adjoint graph.

Matrix multiplication[edit]

For the basic case of a feedforward network, where nodes in each layer are connected only to nodes in the immediate next layer (without skipping any layers), and there is a loss function that computes a scalar loss for the final output, backpropagation can be understood simply by matrix multiplication.[c] Essentially, backpropagation evaluates the expression for the derivative of the cost function as a product of derivatives between each layer from right to left – «backwards» – with the gradient of the weights between each layer being a simple modification of the partial products (the «backwards propagated error»).

Given an input–output pair (x,y), the loss is:

{displaystyle C(y,f^{L}(W^{L}f^{L-1}(W^{L-1}cdots f^{2}(W^{2}f^{1}(W^{1}x))cdots )))}

To compute this, one starts with the input x and works forward; denote the weighted input of each hidden layer as {displaystyle z^{l}} and the output of hidden layer l as the activation {displaystyle a^{l}}. For backpropagation, the activation {displaystyle a^{l}} as well as the derivatives {displaystyle (f^{l})'} (evaluated at {displaystyle z^{l}}) must be cached for use during the backwards pass.

The derivative of the loss in terms of the inputs is given by the chain rule; note that each term is a total derivative, evaluated at the value of the network (at each node) on the input x:

{displaystyle {frac {dC}{da^{L}}}circ {frac {da^{L}}{dz^{L}}}cdot {frac {dz^{L}}{da^{L-1}}}circ {frac {da^{L-1}}{dz^{L-1}}}cdot {frac {dz^{L-1}}{da^{L-2}}}circ ldots circ {frac {da^{1}}{dz^{1}}}cdot {frac {partial z^{1}}{partial x}},}

where circ is a Hadamard product, that is an element-wise product.

These terms are: the derivative of the loss function;[d] the derivatives of the activation functions;[e] and the matrices of weights:[f]

{displaystyle {frac {dC}{da^{L}}}circ (f^{L})'cdot W^{L}circ (f^{L-1})'cdot W^{L-1}circ cdots circ (f^{1})'cdot W^{1}.}

The gradient nabla is the transpose of the derivative of the output in terms of the input, so the matrices are transposed and the order of multiplication is reversed, but the entries are the same:

{displaystyle nabla _{x}C=(W^{1})^{T}cdot (f^{1})'circ ldots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C.}

Backpropagation then consists essentially of evaluating this expression from right to left (equivalently, multiplying the previous expression for the derivative from left to right), computing the gradient at each layer on the way; there is an added step, because the gradient of the weights isn’t just a subexpression: there’s an extra multiplication.

Introducing the auxiliary quantity {displaystyle delta ^{l}} for the partial products (multiplying from right to left), interpreted as the «error at level l» and defined as the gradient of the input values at level l:

{displaystyle delta ^{l}:=(f^{l})'circ (W^{l+1})^{T}circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C.}

Note that {displaystyle delta ^{l}} is a vector, of length equal to the number of nodes in level l; each component is interpreted as the «cost attributable to (the value of) that node».

The gradient of the weights in layer l is then:

{displaystyle nabla _{W^{l}}C=delta ^{l}(a^{l-1})^{T}.}

The factor of {displaystyle a^{l-1}} is because the weights {displaystyle W^{l}} between level {displaystyle l-1} and l affect level l proportionally to the inputs (activations): the inputs are fixed, the weights vary.

The {displaystyle delta ^{l}} can easily be computed recursively, going from right to left, as:

{displaystyle delta ^{l-1}:=(f^{l-1})'circ (W^{l})^{T}cdot delta ^{l}.}

The gradients of the weights can thus be computed using a few matrix multiplications for each level; this is backpropagation.

Compared with naively computing forwards (using the {displaystyle delta ^{l}} for illustration):

{displaystyle {begin{aligned}delta ^{1}&=(f^{1})'circ (W^{2})^{T}cdot (f^{2})'circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}Cdelta ^{2}&=(f^{2})'circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C&vdots delta ^{L-1}&=(f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}Cdelta ^{L}&=(f^{L})'circ nabla _{a^{L}}C,end{aligned}}}

there are two key differences with backpropagation:

  1. Computing {displaystyle delta ^{l-1}} in terms of {displaystyle delta ^{l}} avoids the obvious duplicate multiplication of layers l and beyond.
  2. Multiplying starting from {displaystyle nabla _{a^{L}}C} – propagating the error backwards – means that each step simply multiplies a vector ({displaystyle delta ^{l}}) by the matrices of weights {displaystyle (W^{l})^{T}} and derivatives of activations {displaystyle (f^{l-1})'}. By contrast, multiplying forwards, starting from the changes at an earlier layer, means that each multiplication multiplies a matrix by a matrix. This is much more expensive, and corresponds to tracking every possible path of a change in one layer l forward to changes in the layer {displaystyle l+2} (for multiplying {displaystyle W^{l+1}} by {displaystyle W^{l+2}}, with additional multiplications for the derivatives of the activations), which unnecessarily computes the intermediate quantities of how weight changes affect the values of hidden nodes.

Adjoint graph[edit]

[icon]

This section needs expansion. You can help by adding to it. (November 2019)

For more general graphs, and other advanced variations, backpropagation can be understood in terms of automatic differentiation, where backpropagation is a special case of reverse accumulation (or «reverse mode»).[5]

Intuition[edit]

Motivation[edit]

The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to their correct output. The motivation for backpropagation is to train a multi-layered neural network such that it can learn the appropriate internal representations to allow it to learn any arbitrary mapping of input to output.[10]

Learning as an optimization problem[edit]

To understand the mathematical derivation of the backpropagation algorithm, it helps to first develop some intuition about the relationship between the actual output of a neuron and the correct output for a particular training example. Consider a simple neural network with two input units, one output unit and no hidden units, and in which each neuron uses a linear output (unlike most work on neural networks, in which mapping from inputs to outputs is non-linear)[g] that is the weighted sum of its input.

A simple neural network with two input units (each with a single input) and one output unit (with two inputs)

Initially, before training, the weights will be set randomly. Then the neuron learns from training examples, which in this case consist of a set of tuples {displaystyle (x_{1},x_{2},t)} where x_{1} and x_{2} are the inputs to the network and t is the correct output (the output the network should produce given those inputs, when it has been trained). The initial network, given x_{1} and x_{2}, will compute an output y that likely differs from t (given random weights). A loss function {displaystyle L(t,y)} is used for measuring the discrepancy between the target output t and the computed output y. For regression analysis problems the squared error can be used as a loss function, for classification the categorical crossentropy can be used.

As an example consider a regression problem using the square error as a loss:

{displaystyle L(t,y)=(t-y)^{2}=E,}

where E is the discrepancy or error.

Consider the network on a single training case: (1, 1, 0). Thus, the input x_{1} and x_{2} are 1 and 1 respectively and the correct output, t is 0. Now if the relation is plotted between the network’s output y on the horizontal axis and the error E on the vertical axis, the result is a parabola. The minimum of the parabola corresponds to the output y which minimizes the error E. For a single training case, the minimum also touches the horizontal axis, which means the error will be zero and the network can produce an output y that exactly matches the target output t. Therefore, the problem of mapping inputs to outputs can be reduced to an optimization problem of finding a function that will produce the minimal error.

Error surface of a linear neuron for a single training case

However, the output of a neuron depends on the weighted sum of all its inputs:

{displaystyle y=x_{1}w_{1}+x_{2}w_{2},}

where w_{1} and w_{2} are the weights on the connection from the input units to the output unit. Therefore, the error also depends on the incoming weights to the neuron, which is ultimately what needs to be changed in the network to enable learning.

In this example, upon injecting the training data (1, 1, 0), the loss function becomes

{displaystyle E=(t-y)^{2}=y^{2}=(x_{1}w_{1}+x_{2}w_{2})^{2}=(w_{1}+w_{2})^{2}.}

Then, the loss function E takes the form of a parabolic cylinder with its base directed along {displaystyle w_{1}=-w_{2}}. Since all sets of weights that satisfy {displaystyle w_{1}=-w_{2}} minimize the loss function, in this case additional constraints are required to converge to a unique solution. Additional constraints could either be generated by setting specific conditions to the weights, or by injecting additional training data.

One commonly used algorithm to find the set of weights that minimizes the error is gradient descent. By backpropagation, the steepest descent direction is calculated of the loss function versus the present synaptic weights. Then, the weights can be modified along the steepest descent direction, and the error is minimized in an efficient way.

Derivation[edit]

The gradient descent method involves calculating the derivative of the loss function with respect to the weights of the network. This is normally done using backpropagation. Assuming one output neuron,[h] the squared error function is

{displaystyle E=L(t,y)}

where

L is the loss for the output y and target value t,
t is the target output for a training sample, and
y is the actual output of the output neuron.

For each neuron j, its output o_j is defined as

{displaystyle o_{j}=varphi ({text{net}}_{j})=varphi left(sum _{k=1}^{n}w_{kj}o_{k}right),}

where the activation function varphi is non-linear and differentiable over the activation region (the ReLU is not differentiable at one point). A historically used activation function is the logistic function:

{displaystyle varphi (z)={frac {1}{1+e^{-z}}}}

which has a convenient derivative of:

{displaystyle {frac {dvarphi (z)}{dz}}=varphi (z)(1-varphi (z))}

The input {displaystyle {text{net}}_{j}} to a neuron is the weighted sum of outputs o_k of previous neurons. If the neuron is in the first layer after the input layer, the o_k of the input layer are simply the inputs x_{k} to the network. The number of input units to the neuron is n. The variable {displaystyle w_{kj}} denotes the weight between neuron k of the previous layer and neuron j of the current layer.

Finding the derivative of the error[edit]

Diagram of an artificial neural network to illustrate the notation used here

Calculating the partial derivative of the error with respect to a weight w_{ij} is done using the chain rule twice:

{displaystyle {frac {partial E}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}{frac {partial {text{net}}_{j}}{partial w_{ij}}}}

(Eq. 1)

In the last factor of the right-hand side of the above, only one term in the sum {displaystyle {text{net}}_{j}} depends on w_{ij}, so that

{displaystyle {frac {partial {text{net}}_{j}}{partial w_{ij}}}={frac {partial }{partial w_{ij}}}left(sum _{k=1}^{n}w_{kj}o_{k}right)={frac {partial }{partial w_{ij}}}w_{ij}o_{i}=o_{i}.}

(Eq. 2)

If the neuron is in the first layer after the input layer, o_i is just x_{i}.

The derivative of the output of neuron j with respect to its input is simply the partial derivative of the activation function:

{displaystyle {frac {partial o_{j}}{partial {text{net}}_{j}}}={frac {partial varphi ({text{net}}_{j})}{partial {text{net}}_{j}}}}

(Eq. 3)

which for the logistic activation function

{displaystyle {frac {partial o_{j}}{partial {text{net}}_{j}}}={frac {partial }{partial {text{net}}_{j}}}varphi ({text{net}}_{j})=varphi ({text{net}}_{j})(1-varphi ({text{net}}_{j}))=o_{j}(1-o_{j})}

This is the reason why backpropagation requires the activation function to be differentiable. (Nevertheless, the ReLU activation function, which is non-differentiable at 0, has become quite popular, e.g. in AlexNet)

The first factor is straightforward to evaluate if the neuron is in the output layer, because then o_j = y and

{displaystyle {frac {partial E}{partial o_{j}}}={frac {partial E}{partial y}}}

(Eq. 4)

If half of the square error is used as loss function we can rewrite it as

frac{partial E}{partial o_j} = frac{partial E}{partial y} = frac{partial}{partial y} frac{1}{2}(t - y)^2 = y - t

However, if j is in an arbitrary inner layer of the network, finding the derivative E with respect to o_j is less obvious.

Considering E as a function with the inputs being all neurons {displaystyle L={u,v,dots ,w}} receiving input from neuron j,

{displaystyle {frac {partial E(o_{j})}{partial o_{j}}}={frac {partial E(mathrm {net} _{u},{text{net}}_{v},dots ,mathrm {net} _{w})}{partial o_{j}}}}

and taking the total derivative with respect to o_j, a recursive expression for the derivative is obtained:

{displaystyle {frac {partial E}{partial o_{j}}}=sum _{ell in L}left({frac {partial E}{partial {text{net}}_{ell }}}{frac {partial {text{net}}_{ell }}{partial o_{j}}}right)=sum _{ell in L}left({frac {partial E}{partial o_{ell }}}{frac {partial o_{ell }}{partial {text{net}}_{ell }}}{frac {partial {text{net}}_{ell }}{partial o_{j}}}right)=sum _{ell in L}left({frac {partial E}{partial o_{ell }}}{frac {partial o_{ell }}{partial {text{net}}_{ell }}}w_{jell }right)}

(Eq. 5)

Therefore, the derivative with respect to o_j can be calculated if all the derivatives with respect to the outputs {displaystyle o_{ell }} of the next layer – the ones closer to the output neuron – are known. [Note, if any of the neurons in set L were not connected to neuron j, they would be independent of w_{ij} and the corresponding partial derivative under the summation would vanish to 0.]

Substituting Eq. 2, Eq. 3 Eq.4 and Eq. 5 in Eq. 1 we obtain:

{displaystyle {frac {partial E}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}{frac {partial {text{net}}_{j}}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}o_{i}}
{displaystyle {frac {partial E}{partial w_{ij}}}=o_{i}delta _{j}}

with

{displaystyle delta _{j}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}={begin{cases}{frac {partial L(o_{j},t)}{partial o_{j}}}{frac {dvarphi ({text{net}}_{j})}{d{text{net}}_{j}}}&{text{if }}j{text{ is an output neuron,}}(sum _{ell in L}w_{jell }delta _{ell }){frac {dvarphi ({text{net}}_{j})}{d{text{net}}_{j}}}&{text{if }}j{text{ is an inner neuron.}}end{cases}}}

if varphi is the logistic function, and the error is the square error:

{displaystyle delta _{j}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}={begin{cases}(o_{j}-t_{j})o_{j}(1-o_{j})&{text{if }}j{text{ is an output neuron,}}(sum _{ell in L}w_{jell }delta _{ell })o_{j}(1-o_{j})&{text{if }}j{text{ is an inner neuron.}}end{cases}}}

To update the weight w_{ij} using gradient descent, one must choose a learning rate, {displaystyle eta >0}. The change in weight needs to reflect the impact on E of an increase or decrease in w_{ij}. If {displaystyle {frac {partial E}{partial w_{ij}}}>0}, an increase in w_{ij} increases E; conversely, if {displaystyle {frac {partial E}{partial w_{ij}}}<0}, an increase in w_{ij} decreases E. The new {displaystyle Delta w_{ij}} is added to the old weight, and the product of the learning rate and the gradient, multiplied by -1 guarantees that w_{ij} changes in a way that always decreases E. In other words, in the equation immediately below, {displaystyle -eta {frac {partial E}{partial w_{ij}}}} always changes w_{ij} in such a way that E is decreased:

{displaystyle Delta w_{ij}=-eta {frac {partial E}{partial w_{ij}}}=-eta o_{i}delta _{j}}

Second-order gradient descent[edit]

Using a Hessian matrix of second-order derivatives of the error function, the Levenberg-Marquardt algorithm often converges faster than first-order gradient descent, especially when the topology of the error function is complicated.[11][12] It may also find solutions in smaller node counts for which other methods might not converge.[12] The Hessian can be approximated by the Fisher information matrix.[13]

Loss function[edit]

The loss function is a function that maps values of one or more variables onto a real number intuitively representing some «cost» associated with those values. For backpropagation, the loss function calculates the difference between the network output and its expected output, after a training example has propagated through the network.

Assumptions[edit]

The mathematical expression of the loss function must fulfill two conditions in order for it to be possibly used in backpropagation.[14] The first is that it can be written as an average {textstyle E={frac {1}{n}}sum _{x}E_{x}} over error functions {textstyle E_{x}}, for {textstyle n} individual training examples, {textstyle x}. The reason for this assumption is that the backpropagation algorithm calculates the gradient of the error function for a single training example, which needs to be generalized to the overall error function. The second assumption is that it can be written as a function of the outputs from the neural network.

Example loss function[edit]

Let {displaystyle y,y'} be vectors in mathbb {R} ^{n}.

Select an error function {displaystyle E(y,y')} measuring the difference between two outputs. The standard choice is the square of the Euclidean distance between the vectors y and y':

{displaystyle E(y,y')={tfrac {1}{2}}lVert y-y'rVert ^{2}}

The error function over {textstyle n} training examples can then be written as an average of losses over individual examples:

{displaystyle E={frac {1}{2n}}sum _{x}lVert (y(x)-y'(x))rVert ^{2}}

Limitations[edit]

Gradient descent may find a local minimum instead of the global minimum.

  • Gradient descent with backpropagation is not guaranteed to find the global minimum of the error function, but only a local minimum; also, it has trouble crossing plateaus in the error function landscape. This issue, caused by the non-convexity of error functions in neural networks, was long thought to be a major drawback, but Yann LeCun et al. argue that in many practical problems, it is not.[15]
  • Backpropagation learning does not require normalization of input vectors; however, normalization could improve performance.[16]
  • Backpropagation requires the derivatives of activation functions to be known at network design time.

History[edit]

The term backpropagation and its general use in neural networks was announced in Rumelhart, Hinton & Williams (1986a), then elaborated and popularized in Rumelhart, Hinton & Williams (1986b), but the technique was independently rediscovered many times, and had many predecessors dating to the 1960s.[6][17]

The basics of continuous backpropagation were derived in the context of control theory by Henry J. Kelley in 1960,[18] and by Arthur E. Bryson in 1961.[19][20][21][22][23] They used principles of dynamic programming. In 1962, Stuart Dreyfus published a simpler derivation based only on the chain rule.[24] Bryson and Ho described it as a multi-stage dynamic system optimization method in 1969.[25][26] Backpropagation was derived by multiple researchers in the early 60’s[22] and implemented to run on computers as early as 1970 by Seppo Linnainmaa.[27][28][29] Paul Werbos was first in the US to propose that it could be used for neural nets after analyzing it in depth in his 1974 dissertation.[30] While not applied to neural networks, in 1970 Linnainmaa published the general method for automatic differentiation (AD).[28][29] Although very controversial, some scientists believe this was actually the first step toward developing a back-propagation algorithm.[22][23][27][31] In 1973 Dreyfus adapts parameters of controllers in proportion to error gradients.[32] In 1974 Werbos mentioned the possibility of applying this principle to artificial neural networks,[30] and in 1982 he applied Linnainmaa’s AD method to non-linear functions.[23][33]

Later the Werbos method was rediscovered and described in 1985 by Parker,[34][35] and in 1986 by Rumelhart, Hinton and Williams.[17][35][36] Rumelhart, Hinton and Williams showed experimentally that this method can generate useful internal representations of incoming data in hidden layers of neural networks.[10][37][38] Yann LeCun proposed the modern form of the back-propagation learning algorithm for neural networks in his PhD thesis in 1987. In 1993, Eric Wan won an international pattern recognition contest through backpropagation.[22][39]

During the 2000s it fell out of favour[citation needed], but returned in the 2010s, benefitting from cheap, powerful GPU-based computing systems. This has been especially so in speech recognition, machine vision, natural language processing, and language structure learning research (in which it has been used to explain a variety of phenomena related to first[40] and second language learning.[41]).

Error backpropagation has been suggested to explain human brain ERP components like the N400 and P600.[42]

See also[edit]

  • Artificial neural network
  • Neural circuit
  • Catastrophic interference
  • Ensemble learning
  • AdaBoost
  • Overfitting
  • Neural backpropagation
  • Backpropagation through time

Notes[edit]

  1. ^ Use C for the loss function to allow L to be used for the number of layers
  2. ^ This follows Nielsen (2015), and means (left) multiplication by the matrix {displaystyle W^{l}} corresponds to converting output values of layer {displaystyle l-1} to input values of layer l: columns correspond to input coordinates, rows correspond to output coordinates.
  3. ^ This section largely follows and summarizes Nielsen (2015).
  4. ^ The derivative of the loss function is a covector, since the loss function is a scalar-valued function of several variables.
  5. ^ The activation function is applied to each node separately, so the derivative is just the diagonal matrix of the derivative on each node. This is often represented as the Hadamard product with the vector of derivatives, denoted by {displaystyle (f^{l})'odot }, which is mathematically identical but better matches the internal representation of the derivatives as a vector, rather than a diagonal matrix.
  6. ^ Since matrix multiplication is linear, the derivative of multiplying by a matrix is just the matrix: {displaystyle (Wx)'=W}.
  7. ^ One may notice that multi-layer neural networks use non-linear activation functions, so an example with linear neurons seems obscure. However, even though the error surface of multi-layer networks are much more complicated, locally they can be approximated by a paraboloid. Therefore, linear neurons are used for simplicity and easier understanding.
  8. ^ There can be multiple output neurons, in which case the error is the squared norm of the difference vector.

References[edit]

  1. ^ Goodfellow, Bengio & Courville 2016, p. 200, «The back-propagation algorithm (Rumelhart et al., 1986a), often simply called backprop, …»
  2. ^ Goodfellow, Bengio & Courville 2016, p. 200, «Furthermore, back-propagation is often misunderstood as being specific to multi-layer neural networks, but in principle it can compute derivatives of any function»
  3. ^ Goodfellow, Bengio & Courville 2016, p. 214, «This table-filling strategy is sometimes called dynamic programming
  4. ^ Goodfellow, Bengio & Courville 2016, p. 200, «The term back-propagation is often misunderstood as meaning the whole learning algorithm for multilayer neural networks. Backpropagation refers only to the method for computing the gradient, while other algorithms, such as stochastic gradient descent, is used to perform learning using this gradient.»
  5. ^ a b Goodfellow, Bengio & Courville (2016, p. 217–218), «The back-propagation algorithm described here is only one approach to automatic differentiation. It is a special case of a broader class of techniques called reverse mode accumulation
  6. ^ a b Goodfellow, Bengio & Courville (2016, p. 221), «Efficient applications of the chain rule based on dynamic programming began to appear in the 1960s and 1970s, mostly for control applications (Kelley, 1960; Bryson and Denham, 1961; Dreyfus, 1962; Bryson and Ho, 1969; Dreyfus, 1973) but also for sensitivity analysis (Linnainmaa, 1976). … The idea was finally developed in practice after being independently rediscovered in different ways (LeCun, 1985; Parker, 1985; Rumelhart et al., 1986a). The book Parallel Distributed Processing presented the results of some of the first successful experiments with back-propagation in a chapter (Rumelhart et al., 1986b) that contributed greatly to the popularization of back-propagation and initiated a very active period of research in multilayer neural networks.»
  7. ^ Goodfellow, Bengio & Courville (2016, 6.5 Back-Propagation and Other Differentiation Algorithms, pp. 200–220)
  8. ^ Ramachandran, Prajit; Zoph, Barret; Le, Quoc V. (2017-10-27). «Searching for Activation Functions». arXiv:1710.05941 [cs.NE].
  9. ^ Misra, Diganta (2019-08-23). «Mish: A Self Regularized Non-Monotonic Activation Function». arXiv:1908.08681 [cs.LG].
  10. ^ a b Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986a). «Learning representations by back-propagating errors». Nature. 323 (6088): 533–536. Bibcode:1986Natur.323..533R. doi:10.1038/323533a0. S2CID 205001834.
  11. ^ Tan, Hong Hui; Lim, King Han (2019). «Review of second-order optimization techniques in artificial neural networks backpropagation». IOP Conference Series: Materials Science and Engineering. 495 (1): 012003. Bibcode:2019MS&E..495a2003T. doi:10.1088/1757-899X/495/1/012003. S2CID 208124487.
  12. ^ a b Wiliamowski, Bogdan; Yu, Hao (June 2010). «Improved Computation for Levenberg–Marquardt Training» (PDF). IEEE Transactions on Neural Networks and Learning Systems. 21 (6).
  13. ^ Martens, James (August 2020). «New Insights and Perspectives on the Natural Gradient Method» (PDF). Journal of Machine Learning Research (21). arXiv:1412.1193.
  14. ^ Nielsen (2015), «[W]hat assumptions do we need to make about our cost function … in order that backpropagation can be applied? The first assumption we need is that the cost function can be written as an average … over cost functions … for individual training examples … The second assumption we make about the cost is that it can be written as a function of the outputs from the neural network …»
  15. ^ LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (2015). «Deep learning». Nature. 521 (7553): 436–444. Bibcode:2015Natur.521..436L. doi:10.1038/nature14539. PMID 26017442. S2CID 3074096.
  16. ^ Buckland, Matt; Collins, Mark (2002). AI Techniques for Game Programming. Boston: Premier Press. ISBN 1-931841-08-X.
  17. ^ a b Rumelhart; Hinton; Williams (1986). «Learning representations by back-propagating errors» (PDF). Nature. 323 (6088): 533–536. Bibcode:1986Natur.323..533R. doi:10.1038/323533a0. S2CID 205001834.
  18. ^ Kelley, Henry J. (1960). «Gradient theory of optimal flight paths». ARS Journal. 30 (10): 947–954. doi:10.2514/8.5282.
  19. ^ Bryson, Arthur E. (1962). «A gradient method for optimizing multi-stage allocation processes». Proceedings of the Harvard Univ. Symposium on digital computers and their applications, 3–6 April 1961. Cambridge: Harvard University Press. OCLC 498866871.
  20. ^ Dreyfus, Stuart E. (1990). «Artificial Neural Networks, Back Propagation, and the Kelley-Bryson Gradient Procedure». Journal of Guidance, Control, and Dynamics. 13 (5): 926–928. Bibcode:1990JGCD…13..926D. doi:10.2514/3.25422.
  21. ^ Mizutani, Eiji; Dreyfus, Stuart; Nishio, Kenichi (July 2000). «On derivation of MLP backpropagation from the Kelley-Bryson optimal-control gradient formula and its application» (PDF). Proceedings of the IEEE International Joint Conference on Neural Networks.
  22. ^ a b c d Schmidhuber, Jürgen (2015). «Deep learning in neural networks: An overview». Neural Networks. 61: 85–117. arXiv:1404.7828. doi:10.1016/j.neunet.2014.09.003. PMID 25462637. S2CID 11715509.
  23. ^ a b c Schmidhuber, Jürgen (2015). «Deep Learning». Scholarpedia. 10 (11): 32832. Bibcode:2015SchpJ..1032832S. doi:10.4249/scholarpedia.32832.
  24. ^ Dreyfus, Stuart (1962). «The numerical solution of variational problems». Journal of Mathematical Analysis and Applications. 5 (1): 30–45. doi:10.1016/0022-247x(62)90004-5.
  25. ^ Russell, Stuart; Norvig, Peter (1995). Artificial Intelligence : A Modern Approach. Englewood Cliffs: Prentice Hall. p. 578. ISBN 0-13-103805-2. The most popular method for learning in multilayer networks is called Back-propagation. It was first invented in 1969 by Bryson and Ho, but was more or less ignored until the mid-1980s.
  26. ^ Bryson, Arthur Earl; Ho, Yu-Chi (1969). Applied optimal control: optimization, estimation, and control. Waltham: Blaisdell. OCLC 3801.
  27. ^ a b Griewank, Andreas (2012). «Who Invented the Reverse Mode of Differentiation?». Optimization Stories. Documenta Matematica, Extra Volume ISMP. pp. 389–400. S2CID 15568746.
  28. ^ a b Seppo Linnainmaa (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ. Helsinki, 6–7.
  29. ^ a b Linnainmaa, Seppo (1976). «Taylor expansion of the accumulated rounding error». BIT Numerical Mathematics. 16 (2): 146–160. doi:10.1007/bf01931367. S2CID 122357351.
  30. ^ a b The thesis, and some supplementary information, can be found in his book, Werbos, Paul J. (1994). The Roots of Backpropagation : From Ordered Derivatives to Neural Networks and Political Forecasting. New York: John Wiley & Sons. ISBN 0-471-59897-6.
  31. ^ Griewank, Andreas; Walther, Andrea (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. SIAM. ISBN 978-0-89871-776-1.
  32. ^ Dreyfus, Stuart (1973). «The computational solution of optimal control problems with time lag». IEEE Transactions on Automatic Control. 18 (4): 383–385. doi:10.1109/tac.1973.1100330.
  33. ^ Werbos, Paul (1982). «Applications of advances in nonlinear sensitivity analysis» (PDF). System modeling and optimization. Springer. pp. 762–770.
  34. ^ Parker, D.B. (1985). «Learning Logic». Center for Computational Research in Economics and Management Science. Cambridge MA: Massachusetts Institute of Technology.
  35. ^ a b Hertz, John (1991). Introduction to the theory of neural computation. Krogh, Anders., Palmer, Richard G. Redwood City, Calif.: Addison-Wesley. p. 8. ISBN 0-201-50395-6. OCLC 21522159.
  36. ^ Anderson, James Arthur; Rosenfeld, Edward, eds. (1988). Neurocomputing Foundations of research. MIT Press. ISBN 0-262-01097-6. OCLC 489622044.
  37. ^ Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986b). «8. Learning Internal Representations by Error Propagation». In Rumelhart, David E.; McClelland, James L. (eds.). Parallel Distributed Processing : Explorations in the Microstructure of Cognition. Vol. 1 : Foundations. Cambridge: MIT Press. ISBN 0-262-18120-7.
  38. ^ Alpaydin, Ethem (2010). Introduction to Machine Learning. MIT Press. ISBN 978-0-262-01243-0.
  39. ^ Wan, Eric A. (1994). «Time Series Prediction by Using a Connectionist Network with Internal Delay Lines». In Weigend, Andreas S.; Gershenfeld, Neil A. (eds.). Time Series Prediction : Forecasting the Future and Understanding the Past. Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis. Vol. 15. Reading: Addison-Wesley. pp. 195–217. ISBN 0-201-62601-2. S2CID 12652643.
  40. ^ Chang, Franklin; Dell, Gary S.; Bock, Kathryn (2006). «Becoming syntactic». Psychological Review. 113 (2): 234–272. doi:10.1037/0033-295x.113.2.234. PMID 16637761.
  41. ^ Janciauskas, Marius; Chang, Franklin (2018). «Input and Age-Dependent Variation in Second Language Learning: A Connectionist Account». Cognitive Science. 42: 519–554. doi:10.1111/cogs.12519. PMC 6001481. PMID 28744901.
  42. ^ Fitz, Hartmut; Chang, Franklin (2019). «Language ERPs reflect learning through prediction error propagation». Cognitive Psychology. 111: 15–52. doi:10.1016/j.cogpsych.2019.03.002. hdl:21.11116/0000-0003-474D-8. PMID 30921626. S2CID 85501792.

Further reading[edit]

  • Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). «6.5 Back-Propagation and Other Differentiation Algorithms». Deep Learning. MIT Press. pp. 200–220. ISBN 9780262035613.
  • Nielsen, Michael A. (2015). «How the backpropagation algorithm works». Neural Networks and Deep Learning. Determination Press.
  • McCaffrey, James (October 2012). «Neural Network Back-Propagation for Programmers». MSDN Magazine.
  • Rojas, Raúl (1996). «The Backpropagation Algorithm» (PDF). Neural Networks : A Systematic Introduction. Berlin: Springer. ISBN 3-540-60505-3.

External links[edit]

  • Backpropagation neural network tutorial at the Wikiversity
  • Bernacki, Mariusz; Włodarczyk, Przemysław (2004). «Principles of training multi-layer neural network using backpropagation».
  • Karpathy, Andrej (2016). «Lecture 4: Backpropagation, Neural Networks 1». CS231n. Stanford University. Archived from the original on 2021-12-12 – via YouTube.
  • «What is Backpropagation Really Doing?». 3Blue1Brown. November 3, 2017. Archived from the original on 2021-12-12 – via YouTube.
  • Putta, Sudeep Raja (2022). «Yet Another Derivation of Backpropagation in Matrix Form».

This article is about the computer algorithm. For the biological process, see neural backpropagation.

Backpropagation can also refer to the way the result of a playout is propagated up the search tree in Monte Carlo tree search.

In machine learning, backpropagation (backprop,[1] BP) is a widely used algorithm for training feedforward artificial neural networks. Generalizations of backpropagation exist for other artificial neural networks (ANNs), and for functions generally. These classes of algorithms are all referred to generically as «backpropagation».[2] In fitting a neural network, backpropagation computes the gradient of the loss function with respect to the weights of the network for a single input–output example, and does so efficiently, unlike a naive direct computation of the gradient with respect to each weight individually. This efficiency makes it feasible to use gradient methods for training multilayer networks, updating weights to minimize loss; gradient descent, or variants such as stochastic gradient descent, are commonly used. The backpropagation algorithm works by computing the gradient of the loss function with respect to each weight by the chain rule, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this is an example of dynamic programming.[3]

The term backpropagation strictly refers only to the algorithm for computing the gradient, not how the gradient is used; however, the term is often used loosely to refer to the entire learning algorithm, including how the gradient is used, such as by stochastic gradient descent.[4] Backpropagation generalizes the gradient computation in the delta rule, which is the single-layer version of backpropagation, and is in turn generalized by automatic differentiation, where backpropagation is a special case of reverse accumulation (or «reverse mode»).[5] The term backpropagation and its general use in neural networks was announced in Rumelhart, Hinton & Williams (1986a), then elaborated and popularized in Rumelhart, Hinton & Williams (1986b), but the technique was independently rediscovered many times, and had many predecessors dating to the 1960s; see § History.[6] A modern overview is given in the deep learning textbook by Goodfellow, Bengio & Courville (2016).[7]

Overview[edit]

Backpropagation computes the gradient in weight space of a feedforward neural network, with respect to a loss function. Denote:

  • x: input (vector of features)
  • y: target output
    For classification, output will be a vector of class probabilities (e.g., {displaystyle (0.1,0.7,0.2)}, and target output is a specific class, encoded by the one-hot/dummy variable (e.g., (0,1,0)).
  • C: loss function or «cost function»[a]
    For classification, this is usually cross entropy (XC, log loss), while for regression it is usually squared error loss (SEL).
  • L: the number of layers
  • {displaystyle W^{l}=(w_{jk}^{l})}: the weights between layer {displaystyle l-1} and l, where {displaystyle w_{jk}^{l}} is the weight between the k-th node in layer {displaystyle l-1} and the j-th node in layer l[b]
  • {displaystyle f^{l}}: activation functions at layer l
    For classification the last layer is usually the logistic function for binary classification, and softmax (softargmax) for multi-class classification, while for the hidden layers this was traditionally a sigmoid function (logistic function or others) on each node (coordinate), but today is more varied, with rectifier (ramp, ReLU) being common.

In the derivation of backpropagation, other intermediate quantities are used; they are introduced as needed below. Bias terms are not treated specially, as they correspond to a weight with a fixed input of 1. For the purpose of backpropagation, the specific loss function and activation functions do not matter, as long as they and their derivatives can be evaluated efficiently. Traditional activation functions include but are not limited to sigmoid, tanh, and ReLU. Since, swish,[8] mish,[9] and other activation functions were proposed as well.

The overall network is a combination of function composition and matrix multiplication:

{displaystyle g(x):=f^{L}(W^{L}f^{L-1}(W^{L-1}cdots f^{1}(W^{1}x)cdots ))}

For a training set there will be a set of input–output pairs, {displaystyle left{(x_{i},y_{i})right}}. For each input–output pair (x_{i},y_{i}) in the training set, the loss of the model on that pair is the cost of the difference between the predicted output {displaystyle g(x_{i})} and the target output y_{i}:

{displaystyle C(y_{i},g(x_{i}))}

Note the distinction: during model evaluation, the weights are fixed, while the inputs vary (and the target output may be unknown), and the network ends with the output layer (it does not include the loss function). During model training, the input–output pair is fixed, while the weights vary, and the network ends with the loss function.

Backpropagation computes the gradient for a fixed input–output pair (x_{i},y_{i}), where the weights {displaystyle w_{jk}^{l}} can vary. Each individual component of the gradient, {displaystyle partial C/partial w_{jk}^{l},} can be computed by the chain rule; however, doing this separately for each weight is inefficient. Backpropagation efficiently computes the gradient by avoiding duplicate calculations and not computing unnecessary intermediate values, by computing the gradient of each layer – specifically, the gradient of the weighted input of each layer, denoted by {displaystyle delta ^{l}} – from back to front.

Informally, the key point is that since the only way a weight in {displaystyle W^{l}} affects the loss is through its effect on the next layer, and it does so linearly, {displaystyle delta ^{l}} are the only data you need to compute the gradients of the weights at layer l, and then you can compute the previous layer {displaystyle delta ^{l-1}} and repeat recursively. This avoids inefficiency in two ways. Firstly, it avoids duplication because when computing the gradient at layer l, you do not need to recompute all the derivatives on later layers {displaystyle l+1,l+2,ldots } each time. Secondly, it avoids unnecessary intermediate calculations because at each stage it directly computes the gradient of the weights with respect to the ultimate output (the loss), rather than unnecessarily computing the derivatives of the values of hidden layers with respect to changes in weights {displaystyle partial a_{j'}^{l'}/partial w_{jk}^{l}}.

Backpropagation can be expressed for simple feedforward networks in terms of matrix multiplication, or more generally in terms of the adjoint graph.

Matrix multiplication[edit]

For the basic case of a feedforward network, where nodes in each layer are connected only to nodes in the immediate next layer (without skipping any layers), and there is a loss function that computes a scalar loss for the final output, backpropagation can be understood simply by matrix multiplication.[c] Essentially, backpropagation evaluates the expression for the derivative of the cost function as a product of derivatives between each layer from right to left – «backwards» – with the gradient of the weights between each layer being a simple modification of the partial products (the «backwards propagated error»).

Given an input–output pair (x,y), the loss is:

{displaystyle C(y,f^{L}(W^{L}f^{L-1}(W^{L-1}cdots f^{2}(W^{2}f^{1}(W^{1}x))cdots )))}

To compute this, one starts with the input x and works forward; denote the weighted input of each hidden layer as {displaystyle z^{l}} and the output of hidden layer l as the activation {displaystyle a^{l}}. For backpropagation, the activation {displaystyle a^{l}} as well as the derivatives {displaystyle (f^{l})'} (evaluated at {displaystyle z^{l}}) must be cached for use during the backwards pass.

The derivative of the loss in terms of the inputs is given by the chain rule; note that each term is a total derivative, evaluated at the value of the network (at each node) on the input x:

{displaystyle {frac {dC}{da^{L}}}circ {frac {da^{L}}{dz^{L}}}cdot {frac {dz^{L}}{da^{L-1}}}circ {frac {da^{L-1}}{dz^{L-1}}}cdot {frac {dz^{L-1}}{da^{L-2}}}circ ldots circ {frac {da^{1}}{dz^{1}}}cdot {frac {partial z^{1}}{partial x}},}

where circ is a Hadamard product, that is an element-wise product.

These terms are: the derivative of the loss function;[d] the derivatives of the activation functions;[e] and the matrices of weights:[f]

{displaystyle {frac {dC}{da^{L}}}circ (f^{L})'cdot W^{L}circ (f^{L-1})'cdot W^{L-1}circ cdots circ (f^{1})'cdot W^{1}.}

The gradient nabla is the transpose of the derivative of the output in terms of the input, so the matrices are transposed and the order of multiplication is reversed, but the entries are the same:

{displaystyle nabla _{x}C=(W^{1})^{T}cdot (f^{1})'circ ldots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C.}

Backpropagation then consists essentially of evaluating this expression from right to left (equivalently, multiplying the previous expression for the derivative from left to right), computing the gradient at each layer on the way; there is an added step, because the gradient of the weights isn’t just a subexpression: there’s an extra multiplication.

Introducing the auxiliary quantity {displaystyle delta ^{l}} for the partial products (multiplying from right to left), interpreted as the «error at level l» and defined as the gradient of the input values at level l:

{displaystyle delta ^{l}:=(f^{l})'circ (W^{l+1})^{T}circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C.}

Note that {displaystyle delta ^{l}} is a vector, of length equal to the number of nodes in level l; each component is interpreted as the «cost attributable to (the value of) that node».

The gradient of the weights in layer l is then:

{displaystyle nabla _{W^{l}}C=delta ^{l}(a^{l-1})^{T}.}

The factor of {displaystyle a^{l-1}} is because the weights {displaystyle W^{l}} between level {displaystyle l-1} and l affect level l proportionally to the inputs (activations): the inputs are fixed, the weights vary.

The {displaystyle delta ^{l}} can easily be computed recursively, going from right to left, as:

{displaystyle delta ^{l-1}:=(f^{l-1})'circ (W^{l})^{T}cdot delta ^{l}.}

The gradients of the weights can thus be computed using a few matrix multiplications for each level; this is backpropagation.

Compared with naively computing forwards (using the {displaystyle delta ^{l}} for illustration):

{displaystyle {begin{aligned}delta ^{1}&=(f^{1})'circ (W^{2})^{T}cdot (f^{2})'circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}Cdelta ^{2}&=(f^{2})'circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C&vdots delta ^{L-1}&=(f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}Cdelta ^{L}&=(f^{L})'circ nabla _{a^{L}}C,end{aligned}}}

there are two key differences with backpropagation:

  1. Computing {displaystyle delta ^{l-1}} in terms of {displaystyle delta ^{l}} avoids the obvious duplicate multiplication of layers l and beyond.
  2. Multiplying starting from {displaystyle nabla _{a^{L}}C} – propagating the error backwards – means that each step simply multiplies a vector ({displaystyle delta ^{l}}) by the matrices of weights {displaystyle (W^{l})^{T}} and derivatives of activations {displaystyle (f^{l-1})'}. By contrast, multiplying forwards, starting from the changes at an earlier layer, means that each multiplication multiplies a matrix by a matrix. This is much more expensive, and corresponds to tracking every possible path of a change in one layer l forward to changes in the layer {displaystyle l+2} (for multiplying {displaystyle W^{l+1}} by {displaystyle W^{l+2}}, with additional multiplications for the derivatives of the activations), which unnecessarily computes the intermediate quantities of how weight changes affect the values of hidden nodes.

Adjoint graph[edit]

[icon]

This section needs expansion. You can help by adding to it. (November 2019)

For more general graphs, and other advanced variations, backpropagation can be understood in terms of automatic differentiation, where backpropagation is a special case of reverse accumulation (or «reverse mode»).[5]

Intuition[edit]

Motivation[edit]

The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to their correct output. The motivation for backpropagation is to train a multi-layered neural network such that it can learn the appropriate internal representations to allow it to learn any arbitrary mapping of input to output.[10]

Learning as an optimization problem[edit]

To understand the mathematical derivation of the backpropagation algorithm, it helps to first develop some intuition about the relationship between the actual output of a neuron and the correct output for a particular training example. Consider a simple neural network with two input units, one output unit and no hidden units, and in which each neuron uses a linear output (unlike most work on neural networks, in which mapping from inputs to outputs is non-linear)[g] that is the weighted sum of its input.

A simple neural network with two input units (each with a single input) and one output unit (with two inputs)

Initially, before training, the weights will be set randomly. Then the neuron learns from training examples, which in this case consist of a set of tuples {displaystyle (x_{1},x_{2},t)} where x_{1} and x_{2} are the inputs to the network and t is the correct output (the output the network should produce given those inputs, when it has been trained). The initial network, given x_{1} and x_{2}, will compute an output y that likely differs from t (given random weights). A loss function {displaystyle L(t,y)} is used for measuring the discrepancy between the target output t and the computed output y. For regression analysis problems the squared error can be used as a loss function, for classification the categorical crossentropy can be used.

As an example consider a regression problem using the square error as a loss:

{displaystyle L(t,y)=(t-y)^{2}=E,}

where E is the discrepancy or error.

Consider the network on a single training case: (1, 1, 0). Thus, the input x_{1} and x_{2} are 1 and 1 respectively and the correct output, t is 0. Now if the relation is plotted between the network’s output y on the horizontal axis and the error E on the vertical axis, the result is a parabola. The minimum of the parabola corresponds to the output y which minimizes the error E. For a single training case, the minimum also touches the horizontal axis, which means the error will be zero and the network can produce an output y that exactly matches the target output t. Therefore, the problem of mapping inputs to outputs can be reduced to an optimization problem of finding a function that will produce the minimal error.

Error surface of a linear neuron for a single training case

However, the output of a neuron depends on the weighted sum of all its inputs:

{displaystyle y=x_{1}w_{1}+x_{2}w_{2},}

where w_{1} and w_{2} are the weights on the connection from the input units to the output unit. Therefore, the error also depends on the incoming weights to the neuron, which is ultimately what needs to be changed in the network to enable learning.

In this example, upon injecting the training data (1, 1, 0), the loss function becomes

{displaystyle E=(t-y)^{2}=y^{2}=(x_{1}w_{1}+x_{2}w_{2})^{2}=(w_{1}+w_{2})^{2}.}

Then, the loss function E takes the form of a parabolic cylinder with its base directed along {displaystyle w_{1}=-w_{2}}. Since all sets of weights that satisfy {displaystyle w_{1}=-w_{2}} minimize the loss function, in this case additional constraints are required to converge to a unique solution. Additional constraints could either be generated by setting specific conditions to the weights, or by injecting additional training data.

One commonly used algorithm to find the set of weights that minimizes the error is gradient descent. By backpropagation, the steepest descent direction is calculated of the loss function versus the present synaptic weights. Then, the weights can be modified along the steepest descent direction, and the error is minimized in an efficient way.

Derivation[edit]

The gradient descent method involves calculating the derivative of the loss function with respect to the weights of the network. This is normally done using backpropagation. Assuming one output neuron,[h] the squared error function is

{displaystyle E=L(t,y)}

where

L is the loss for the output y and target value t,
t is the target output for a training sample, and
y is the actual output of the output neuron.

For each neuron j, its output o_j is defined as

{displaystyle o_{j}=varphi ({text{net}}_{j})=varphi left(sum _{k=1}^{n}w_{kj}o_{k}right),}

where the activation function varphi is non-linear and differentiable over the activation region (the ReLU is not differentiable at one point). A historically used activation function is the logistic function:

{displaystyle varphi (z)={frac {1}{1+e^{-z}}}}

which has a convenient derivative of:

{displaystyle {frac {dvarphi (z)}{dz}}=varphi (z)(1-varphi (z))}

The input {displaystyle {text{net}}_{j}} to a neuron is the weighted sum of outputs o_k of previous neurons. If the neuron is in the first layer after the input layer, the o_k of the input layer are simply the inputs x_{k} to the network. The number of input units to the neuron is n. The variable {displaystyle w_{kj}} denotes the weight between neuron k of the previous layer and neuron j of the current layer.

Finding the derivative of the error[edit]

Diagram of an artificial neural network to illustrate the notation used here

Calculating the partial derivative of the error with respect to a weight w_{ij} is done using the chain rule twice:

{displaystyle {frac {partial E}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}{frac {partial {text{net}}_{j}}{partial w_{ij}}}}

(Eq. 1)

In the last factor of the right-hand side of the above, only one term in the sum {displaystyle {text{net}}_{j}} depends on w_{ij}, so that

{displaystyle {frac {partial {text{net}}_{j}}{partial w_{ij}}}={frac {partial }{partial w_{ij}}}left(sum _{k=1}^{n}w_{kj}o_{k}right)={frac {partial }{partial w_{ij}}}w_{ij}o_{i}=o_{i}.}

(Eq. 2)

If the neuron is in the first layer after the input layer, o_i is just x_{i}.

The derivative of the output of neuron j with respect to its input is simply the partial derivative of the activation function:

{displaystyle {frac {partial o_{j}}{partial {text{net}}_{j}}}={frac {partial varphi ({text{net}}_{j})}{partial {text{net}}_{j}}}}

(Eq. 3)

which for the logistic activation function

{displaystyle {frac {partial o_{j}}{partial {text{net}}_{j}}}={frac {partial }{partial {text{net}}_{j}}}varphi ({text{net}}_{j})=varphi ({text{net}}_{j})(1-varphi ({text{net}}_{j}))=o_{j}(1-o_{j})}

This is the reason why backpropagation requires the activation function to be differentiable. (Nevertheless, the ReLU activation function, which is non-differentiable at 0, has become quite popular, e.g. in AlexNet)

The first factor is straightforward to evaluate if the neuron is in the output layer, because then o_j = y and

{displaystyle {frac {partial E}{partial o_{j}}}={frac {partial E}{partial y}}}

(Eq. 4)

If half of the square error is used as loss function we can rewrite it as

frac{partial E}{partial o_j} = frac{partial E}{partial y} = frac{partial}{partial y} frac{1}{2}(t - y)^2 = y - t

However, if j is in an arbitrary inner layer of the network, finding the derivative E with respect to o_j is less obvious.

Considering E as a function with the inputs being all neurons {displaystyle L={u,v,dots ,w}} receiving input from neuron j,

{displaystyle {frac {partial E(o_{j})}{partial o_{j}}}={frac {partial E(mathrm {net} _{u},{text{net}}_{v},dots ,mathrm {net} _{w})}{partial o_{j}}}}

and taking the total derivative with respect to o_j, a recursive expression for the derivative is obtained:

{displaystyle {frac {partial E}{partial o_{j}}}=sum _{ell in L}left({frac {partial E}{partial {text{net}}_{ell }}}{frac {partial {text{net}}_{ell }}{partial o_{j}}}right)=sum _{ell in L}left({frac {partial E}{partial o_{ell }}}{frac {partial o_{ell }}{partial {text{net}}_{ell }}}{frac {partial {text{net}}_{ell }}{partial o_{j}}}right)=sum _{ell in L}left({frac {partial E}{partial o_{ell }}}{frac {partial o_{ell }}{partial {text{net}}_{ell }}}w_{jell }right)}

(Eq. 5)

Therefore, the derivative with respect to o_j can be calculated if all the derivatives with respect to the outputs {displaystyle o_{ell }} of the next layer – the ones closer to the output neuron – are known. [Note, if any of the neurons in set L were not connected to neuron j, they would be independent of w_{ij} and the corresponding partial derivative under the summation would vanish to 0.]

Substituting Eq. 2, Eq. 3 Eq.4 and Eq. 5 in Eq. 1 we obtain:

{displaystyle {frac {partial E}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}{frac {partial {text{net}}_{j}}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}o_{i}}
{displaystyle {frac {partial E}{partial w_{ij}}}=o_{i}delta _{j}}

with

{displaystyle delta _{j}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}={begin{cases}{frac {partial L(o_{j},t)}{partial o_{j}}}{frac {dvarphi ({text{net}}_{j})}{d{text{net}}_{j}}}&{text{if }}j{text{ is an output neuron,}}(sum _{ell in L}w_{jell }delta _{ell }){frac {dvarphi ({text{net}}_{j})}{d{text{net}}_{j}}}&{text{if }}j{text{ is an inner neuron.}}end{cases}}}

if varphi is the logistic function, and the error is the square error:

{displaystyle delta _{j}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}={begin{cases}(o_{j}-t_{j})o_{j}(1-o_{j})&{text{if }}j{text{ is an output neuron,}}(sum _{ell in L}w_{jell }delta _{ell })o_{j}(1-o_{j})&{text{if }}j{text{ is an inner neuron.}}end{cases}}}

To update the weight w_{ij} using gradient descent, one must choose a learning rate, {displaystyle eta >0}. The change in weight needs to reflect the impact on E of an increase or decrease in w_{ij}. If {displaystyle {frac {partial E}{partial w_{ij}}}>0}, an increase in w_{ij} increases E; conversely, if {displaystyle {frac {partial E}{partial w_{ij}}}<0}, an increase in w_{ij} decreases E. The new {displaystyle Delta w_{ij}} is added to the old weight, and the product of the learning rate and the gradient, multiplied by -1 guarantees that w_{ij} changes in a way that always decreases E. In other words, in the equation immediately below, {displaystyle -eta {frac {partial E}{partial w_{ij}}}} always changes w_{ij} in such a way that E is decreased:

{displaystyle Delta w_{ij}=-eta {frac {partial E}{partial w_{ij}}}=-eta o_{i}delta _{j}}

Second-order gradient descent[edit]

Using a Hessian matrix of second-order derivatives of the error function, the Levenberg-Marquardt algorithm often converges faster than first-order gradient descent, especially when the topology of the error function is complicated.[11][12] It may also find solutions in smaller node counts for which other methods might not converge.[12] The Hessian can be approximated by the Fisher information matrix.[13]

Loss function[edit]

The loss function is a function that maps values of one or more variables onto a real number intuitively representing some «cost» associated with those values. For backpropagation, the loss function calculates the difference between the network output and its expected output, after a training example has propagated through the network.

Assumptions[edit]

The mathematical expression of the loss function must fulfill two conditions in order for it to be possibly used in backpropagation.[14] The first is that it can be written as an average {textstyle E={frac {1}{n}}sum _{x}E_{x}} over error functions {textstyle E_{x}}, for {textstyle n} individual training examples, {textstyle x}. The reason for this assumption is that the backpropagation algorithm calculates the gradient of the error function for a single training example, which needs to be generalized to the overall error function. The second assumption is that it can be written as a function of the outputs from the neural network.

Example loss function[edit]

Let {displaystyle y,y'} be vectors in mathbb {R} ^{n}.

Select an error function {displaystyle E(y,y')} measuring the difference between two outputs. The standard choice is the square of the Euclidean distance between the vectors y and y':

{displaystyle E(y,y')={tfrac {1}{2}}lVert y-y'rVert ^{2}}

The error function over {textstyle n} training examples can then be written as an average of losses over individual examples:

{displaystyle E={frac {1}{2n}}sum _{x}lVert (y(x)-y'(x))rVert ^{2}}

Limitations[edit]

Gradient descent may find a local minimum instead of the global minimum.

  • Gradient descent with backpropagation is not guaranteed to find the global minimum of the error function, but only a local minimum; also, it has trouble crossing plateaus in the error function landscape. This issue, caused by the non-convexity of error functions in neural networks, was long thought to be a major drawback, but Yann LeCun et al. argue that in many practical problems, it is not.[15]
  • Backpropagation learning does not require normalization of input vectors; however, normalization could improve performance.[16]
  • Backpropagation requires the derivatives of activation functions to be known at network design time.

History[edit]

The term backpropagation and its general use in neural networks was announced in Rumelhart, Hinton & Williams (1986a), then elaborated and popularized in Rumelhart, Hinton & Williams (1986b), but the technique was independently rediscovered many times, and had many predecessors dating to the 1960s.[6][17]

The basics of continuous backpropagation were derived in the context of control theory by Henry J. Kelley in 1960,[18] and by Arthur E. Bryson in 1961.[19][20][21][22][23] They used principles of dynamic programming. In 1962, Stuart Dreyfus published a simpler derivation based only on the chain rule.[24] Bryson and Ho described it as a multi-stage dynamic system optimization method in 1969.[25][26] Backpropagation was derived by multiple researchers in the early 60’s[22] and implemented to run on computers as early as 1970 by Seppo Linnainmaa.[27][28][29] Paul Werbos was first in the US to propose that it could be used for neural nets after analyzing it in depth in his 1974 dissertation.[30] While not applied to neural networks, in 1970 Linnainmaa published the general method for automatic differentiation (AD).[28][29] Although very controversial, some scientists believe this was actually the first step toward developing a back-propagation algorithm.[22][23][27][31] In 1973 Dreyfus adapts parameters of controllers in proportion to error gradients.[32] In 1974 Werbos mentioned the possibility of applying this principle to artificial neural networks,[30] and in 1982 he applied Linnainmaa’s AD method to non-linear functions.[23][33]

Later the Werbos method was rediscovered and described in 1985 by Parker,[34][35] and in 1986 by Rumelhart, Hinton and Williams.[17][35][36] Rumelhart, Hinton and Williams showed experimentally that this method can generate useful internal representations of incoming data in hidden layers of neural networks.[10][37][38] Yann LeCun proposed the modern form of the back-propagation learning algorithm for neural networks in his PhD thesis in 1987. In 1993, Eric Wan won an international pattern recognition contest through backpropagation.[22][39]

During the 2000s it fell out of favour[citation needed], but returned in the 2010s, benefitting from cheap, powerful GPU-based computing systems. This has been especially so in speech recognition, machine vision, natural language processing, and language structure learning research (in which it has been used to explain a variety of phenomena related to first[40] and second language learning.[41]).

Error backpropagation has been suggested to explain human brain ERP components like the N400 and P600.[42]

See also[edit]

  • Artificial neural network
  • Neural circuit
  • Catastrophic interference
  • Ensemble learning
  • AdaBoost
  • Overfitting
  • Neural backpropagation
  • Backpropagation through time

Notes[edit]

  1. ^ Use C for the loss function to allow L to be used for the number of layers
  2. ^ This follows Nielsen (2015), and means (left) multiplication by the matrix {displaystyle W^{l}} corresponds to converting output values of layer {displaystyle l-1} to input values of layer l: columns correspond to input coordinates, rows correspond to output coordinates.
  3. ^ This section largely follows and summarizes Nielsen (2015).
  4. ^ The derivative of the loss function is a covector, since the loss function is a scalar-valued function of several variables.
  5. ^ The activation function is applied to each node separately, so the derivative is just the diagonal matrix of the derivative on each node. This is often represented as the Hadamard product with the vector of derivatives, denoted by {displaystyle (f^{l})'odot }, which is mathematically identical but better matches the internal representation of the derivatives as a vector, rather than a diagonal matrix.
  6. ^ Since matrix multiplication is linear, the derivative of multiplying by a matrix is just the matrix: {displaystyle (Wx)'=W}.
  7. ^ One may notice that multi-layer neural networks use non-linear activation functions, so an example with linear neurons seems obscure. However, even though the error surface of multi-layer networks are much more complicated, locally they can be approximated by a paraboloid. Therefore, linear neurons are used for simplicity and easier understanding.
  8. ^ There can be multiple output neurons, in which case the error is the squared norm of the difference vector.

References[edit]

  1. ^ Goodfellow, Bengio & Courville 2016, p. 200, «The back-propagation algorithm (Rumelhart et al., 1986a), often simply called backprop, …»
  2. ^ Goodfellow, Bengio & Courville 2016, p. 200, «Furthermore, back-propagation is often misunderstood as being specific to multi-layer neural networks, but in principle it can compute derivatives of any function»
  3. ^ Goodfellow, Bengio & Courville 2016, p. 214, «This table-filling strategy is sometimes called dynamic programming
  4. ^ Goodfellow, Bengio & Courville 2016, p. 200, «The term back-propagation is often misunderstood as meaning the whole learning algorithm for multilayer neural networks. Backpropagation refers only to the method for computing the gradient, while other algorithms, such as stochastic gradient descent, is used to perform learning using this gradient.»
  5. ^ a b Goodfellow, Bengio & Courville (2016, p. 217–218), «The back-propagation algorithm described here is only one approach to automatic differentiation. It is a special case of a broader class of techniques called reverse mode accumulation
  6. ^ a b Goodfellow, Bengio & Courville (2016, p. 221), «Efficient applications of the chain rule based on dynamic programming began to appear in the 1960s and 1970s, mostly for control applications (Kelley, 1960; Bryson and Denham, 1961; Dreyfus, 1962; Bryson and Ho, 1969; Dreyfus, 1973) but also for sensitivity analysis (Linnainmaa, 1976). … The idea was finally developed in practice after being independently rediscovered in different ways (LeCun, 1985; Parker, 1985; Rumelhart et al., 1986a). The book Parallel Distributed Processing presented the results of some of the first successful experiments with back-propagation in a chapter (Rumelhart et al., 1986b) that contributed greatly to the popularization of back-propagation and initiated a very active period of research in multilayer neural networks.»
  7. ^ Goodfellow, Bengio & Courville (2016, 6.5 Back-Propagation and Other Differentiation Algorithms, pp. 200–220)
  8. ^ Ramachandran, Prajit; Zoph, Barret; Le, Quoc V. (2017-10-27). «Searching for Activation Functions». arXiv:1710.05941 [cs.NE].
  9. ^ Misra, Diganta (2019-08-23). «Mish: A Self Regularized Non-Monotonic Activation Function». arXiv:1908.08681 [cs.LG].
  10. ^ a b Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986a). «Learning representations by back-propagating errors». Nature. 323 (6088): 533–536. Bibcode:1986Natur.323..533R. doi:10.1038/323533a0. S2CID 205001834.
  11. ^ Tan, Hong Hui; Lim, King Han (2019). «Review of second-order optimization techniques in artificial neural networks backpropagation». IOP Conference Series: Materials Science and Engineering. 495 (1): 012003. Bibcode:2019MS&E..495a2003T. doi:10.1088/1757-899X/495/1/012003. S2CID 208124487.
  12. ^ a b Wiliamowski, Bogdan; Yu, Hao (June 2010). «Improved Computation for Levenberg–Marquardt Training» (PDF). IEEE Transactions on Neural Networks and Learning Systems. 21 (6).
  13. ^ Martens, James (August 2020). «New Insights and Perspectives on the Natural Gradient Method» (PDF). Journal of Machine Learning Research (21). arXiv:1412.1193.
  14. ^ Nielsen (2015), «[W]hat assumptions do we need to make about our cost function … in order that backpropagation can be applied? The first assumption we need is that the cost function can be written as an average … over cost functions … for individual training examples … The second assumption we make about the cost is that it can be written as a function of the outputs from the neural network …»
  15. ^ LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (2015). «Deep learning». Nature. 521 (7553): 436–444. Bibcode:2015Natur.521..436L. doi:10.1038/nature14539. PMID 26017442. S2CID 3074096.
  16. ^ Buckland, Matt; Collins, Mark (2002). AI Techniques for Game Programming. Boston: Premier Press. ISBN 1-931841-08-X.
  17. ^ a b Rumelhart; Hinton; Williams (1986). «Learning representations by back-propagating errors» (PDF). Nature. 323 (6088): 533–536. Bibcode:1986Natur.323..533R. doi:10.1038/323533a0. S2CID 205001834.
  18. ^ Kelley, Henry J. (1960). «Gradient theory of optimal flight paths». ARS Journal. 30 (10): 947–954. doi:10.2514/8.5282.
  19. ^ Bryson, Arthur E. (1962). «A gradient method for optimizing multi-stage allocation processes». Proceedings of the Harvard Univ. Symposium on digital computers and their applications, 3–6 April 1961. Cambridge: Harvard University Press. OCLC 498866871.
  20. ^ Dreyfus, Stuart E. (1990). «Artificial Neural Networks, Back Propagation, and the Kelley-Bryson Gradient Procedure». Journal of Guidance, Control, and Dynamics. 13 (5): 926–928. Bibcode:1990JGCD…13..926D. doi:10.2514/3.25422.
  21. ^ Mizutani, Eiji; Dreyfus, Stuart; Nishio, Kenichi (July 2000). «On derivation of MLP backpropagation from the Kelley-Bryson optimal-control gradient formula and its application» (PDF). Proceedings of the IEEE International Joint Conference on Neural Networks.
  22. ^ a b c d Schmidhuber, Jürgen (2015). «Deep learning in neural networks: An overview». Neural Networks. 61: 85–117. arXiv:1404.7828. doi:10.1016/j.neunet.2014.09.003. PMID 25462637. S2CID 11715509.
  23. ^ a b c Schmidhuber, Jürgen (2015). «Deep Learning». Scholarpedia. 10 (11): 32832. Bibcode:2015SchpJ..1032832S. doi:10.4249/scholarpedia.32832.
  24. ^ Dreyfus, Stuart (1962). «The numerical solution of variational problems». Journal of Mathematical Analysis and Applications. 5 (1): 30–45. doi:10.1016/0022-247x(62)90004-5.
  25. ^ Russell, Stuart; Norvig, Peter (1995). Artificial Intelligence : A Modern Approach. Englewood Cliffs: Prentice Hall. p. 578. ISBN 0-13-103805-2. The most popular method for learning in multilayer networks is called Back-propagation. It was first invented in 1969 by Bryson and Ho, but was more or less ignored until the mid-1980s.
  26. ^ Bryson, Arthur Earl; Ho, Yu-Chi (1969). Applied optimal control: optimization, estimation, and control. Waltham: Blaisdell. OCLC 3801.
  27. ^ a b Griewank, Andreas (2012). «Who Invented the Reverse Mode of Differentiation?». Optimization Stories. Documenta Matematica, Extra Volume ISMP. pp. 389–400. S2CID 15568746.
  28. ^ a b Seppo Linnainmaa (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ. Helsinki, 6–7.
  29. ^ a b Linnainmaa, Seppo (1976). «Taylor expansion of the accumulated rounding error». BIT Numerical Mathematics. 16 (2): 146–160. doi:10.1007/bf01931367. S2CID 122357351.
  30. ^ a b The thesis, and some supplementary information, can be found in his book, Werbos, Paul J. (1994). The Roots of Backpropagation : From Ordered Derivatives to Neural Networks and Political Forecasting. New York: John Wiley & Sons. ISBN 0-471-59897-6.
  31. ^ Griewank, Andreas; Walther, Andrea (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. SIAM. ISBN 978-0-89871-776-1.
  32. ^ Dreyfus, Stuart (1973). «The computational solution of optimal control problems with time lag». IEEE Transactions on Automatic Control. 18 (4): 383–385. doi:10.1109/tac.1973.1100330.
  33. ^ Werbos, Paul (1982). «Applications of advances in nonlinear sensitivity analysis» (PDF). System modeling and optimization. Springer. pp. 762–770.
  34. ^ Parker, D.B. (1985). «Learning Logic». Center for Computational Research in Economics and Management Science. Cambridge MA: Massachusetts Institute of Technology.
  35. ^ a b Hertz, John (1991). Introduction to the theory of neural computation. Krogh, Anders., Palmer, Richard G. Redwood City, Calif.: Addison-Wesley. p. 8. ISBN 0-201-50395-6. OCLC 21522159.
  36. ^ Anderson, James Arthur; Rosenfeld, Edward, eds. (1988). Neurocomputing Foundations of research. MIT Press. ISBN 0-262-01097-6. OCLC 489622044.
  37. ^ Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986b). «8. Learning Internal Representations by Error Propagation». In Rumelhart, David E.; McClelland, James L. (eds.). Parallel Distributed Processing : Explorations in the Microstructure of Cognition. Vol. 1 : Foundations. Cambridge: MIT Press. ISBN 0-262-18120-7.
  38. ^ Alpaydin, Ethem (2010). Introduction to Machine Learning. MIT Press. ISBN 978-0-262-01243-0.
  39. ^ Wan, Eric A. (1994). «Time Series Prediction by Using a Connectionist Network with Internal Delay Lines». In Weigend, Andreas S.; Gershenfeld, Neil A. (eds.). Time Series Prediction : Forecasting the Future and Understanding the Past. Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis. Vol. 15. Reading: Addison-Wesley. pp. 195–217. ISBN 0-201-62601-2. S2CID 12652643.
  40. ^ Chang, Franklin; Dell, Gary S.; Bock, Kathryn (2006). «Becoming syntactic». Psychological Review. 113 (2): 234–272. doi:10.1037/0033-295x.113.2.234. PMID 16637761.
  41. ^ Janciauskas, Marius; Chang, Franklin (2018). «Input and Age-Dependent Variation in Second Language Learning: A Connectionist Account». Cognitive Science. 42: 519–554. doi:10.1111/cogs.12519. PMC 6001481. PMID 28744901.
  42. ^ Fitz, Hartmut; Chang, Franklin (2019). «Language ERPs reflect learning through prediction error propagation». Cognitive Psychology. 111: 15–52. doi:10.1016/j.cogpsych.2019.03.002. hdl:21.11116/0000-0003-474D-8. PMID 30921626. S2CID 85501792.

Further reading[edit]

  • Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). «6.5 Back-Propagation and Other Differentiation Algorithms». Deep Learning. MIT Press. pp. 200–220. ISBN 9780262035613.
  • Nielsen, Michael A. (2015). «How the backpropagation algorithm works». Neural Networks and Deep Learning. Determination Press.
  • McCaffrey, James (October 2012). «Neural Network Back-Propagation for Programmers». MSDN Magazine.
  • Rojas, Raúl (1996). «The Backpropagation Algorithm» (PDF). Neural Networks : A Systematic Introduction. Berlin: Springer. ISBN 3-540-60505-3.

External links[edit]

  • Backpropagation neural network tutorial at the Wikiversity
  • Bernacki, Mariusz; Włodarczyk, Przemysław (2004). «Principles of training multi-layer neural network using backpropagation».
  • Karpathy, Andrej (2016). «Lecture 4: Backpropagation, Neural Networks 1». CS231n. Stanford University. Archived from the original on 2021-12-12 – via YouTube.
  • «What is Backpropagation Really Doing?». 3Blue1Brown. November 3, 2017. Archived from the original on 2021-12-12 – via YouTube.
  • Putta, Sudeep Raja (2022). «Yet Another Derivation of Backpropagation in Matrix Form».

Метод обратного распространения ошибок (англ. backpropagation) — метод вычисления градиента, который используется при обновлении весов в нейронной сети.

Содержание

  • 1 Обучение как задача оптимизации
  • 2 Дифференцирование для однослойной сети
    • 2.1 Находим производную ошибки
  • 3 Алгоритм
  • 4 Недостатки алгоритма
    • 4.1 Паралич сети
    • 4.2 Локальные минимумы
  • 5 Примечания
  • 6 См. также
  • 7 Источники информации

Обучение как задача оптимизации

Рассмотрим простую нейронную сеть без скрытых слоев, с двумя входными вершинами и одной выходной, в которых каждый нейрон использует линейную функцию активации, (обычно, многослойные нейронные сети используют нелинейные функции активации, линейные функции используются для упрощения понимания) которая является взвешенной суммой входных данных.

Простая нейронная сеть с двумя входными вершинами и одной выходной

Изначально веса задаются случайно. Затем, нейрон обучается с помощью тренировочного множества, которое в этом случае состоит из множества троек где и — это входные данные сети и — правильный ответ. Начальная сеть, приняв на вход и , вычислит ответ , который вероятно отличается от . Общепринятый метод вычисления несоответствия между ожидаемым и получившимся ответом — квадратичная функция потерь:

где ошибка.

В качестве примера, обучим сеть на объекте , таким образом, значения и равны 1, а равно 0. Построим график зависимости ошибки от действительного ответа , его результатом будет парабола. Минимум параболы соответствует ответу , минимизирующему . Если тренировочный объект один, минимум касается горизонтальной оси, следовательно ошибка будет нулевая и сеть может выдать ответ равный ожидаемому ответу . Следовательно, задача преобразования входных значений в выходные может быть сведена к задаче оптимизации, заключающейся в поиске функции, которая даст минимальную ошибку.

График ошибки для нейрона с линейной функцией активации и одним тренировочным объектом

В таком случае, выходное значение нейрона — взвешенная сумма всех его входных значений:

где и — веса на ребрах, соединяющих входные вершины с выходной. Следовательно, ошибка зависит от весов ребер, входящих в нейрон. И именно это нужно менять в процессе обучения. Распространенный алгоритм для поиска набора весов, минимизирующего ошибку — градиентный спуск. Метод обратного распространения ошибки используется для вычисления самого «крутого» направления для спуска.

Дифференцирование для однослойной сети

Метод градиентного спуска включает в себя вычисление дифференциала квадратичной функции ошибки относительно весов сети. Обычно это делается с помощью метода обратного распространения ошибки. Предположим, что выходной нейрон один, (их может быть несколько, тогда ошибка — это квадратичная норма вектора разницы) тогда квадратичная функция ошибки:

где — квадратичная ошибка, — требуемый ответ для обучающего образца, — действительный ответ сети.

Множитель добавлен чтобы предотвратить возникновение экспоненты во время дифференцирования. На результат это не повлияет, потому что позже выражение будет умножено на произвольную величину скорости обучения (англ. learning rate).

Для каждого нейрона , его выходное значение определено как

Входные значения нейрона — это взвешенная сумма выходных значений предыдущих нейронов. Если нейрон в первом слое после входного, то входного слоя — это просто входные значения сети. Количество входных значений нейрона . Переменная обозначает вес на ребре между нейроном предыдущего слоя и нейроном текущего слоя.

Функция активации нелинейна и дифференцируема. Одна из распространенных функций активации — сигмоида:

у нее удобная производная:

Находим производную ошибки

Вычисление частной производной ошибки по весам выполняется с помощью цепного правила:

Только одно слагаемое в зависит от , так что

Если нейрон в первом слое после входного, то — это просто .

Производная выходного значения нейрона по его входному значению — это просто частная производная функции активации (предполагается что в качестве функции активации используется сигмоида):

По этой причине данный метод требует дифференцируемой функции активации. (Тем не менее, функция ReLU стала достаточно популярной в последнее время, хоть и не дифференцируема в 0)

Первый множитель легко вычислим, если нейрон находится в выходном слое, ведь в таком случае и

Тем не менее, если произвольный внутренний слой сети, нахождение производной по менее очевидно.

Если рассмотреть как функцию, берущую на вход все нейроны получающие на вход значение нейрона ,

и взять полную производную по , то получим рекурсивное выражение для производной:

Следовательно, производная по может быть вычислена если все производные по выходным значениям следующего слоя известны.

Если собрать все месте:

и

Чтобы обновить вес используя градиентный спуск, нужно выбрать скорость обучения, . Изменение в весах должно отражать влияние на увеличение или уменьшение в . Если , увеличение увеличивает ; наоборот, если , увеличение уменьшает . Новый добавлен к старым весам, и произведение скорости обучения на градиент, умноженный на , гарантирует, что изменения будут всегда уменьшать . Другими словами, в следующем уравнении, всегда изменяет в такую сторону, что уменьшается:

Алгоритм

  • — скорость обучения
  • — коэффициент инерциальности для сглаживания резких скачков при перемещении по поверхности целевой функции
  • — обучающее множество
  • — количество повторений
  • — функция, подающая x на вход сети и возвращающая выходные значения всех ее узлов
  • — количество слоев в сети
  • — множество нейронов в слое i
  • — множество нейронов в выходном слое
fun BackPropagation:
   init 
   repeat :
       for  =  to :
            =  
           for :
                = 
           for  =  to :
               for :
                    = 
           for :
                = 
                = 
   return 

Недостатки алгоритма

Несмотря на многочисленные успешные применения обратного распространения, оно не является универсальным решением. Больше всего неприятностей приносит неопределённо долгий процесс обучения. В сложных задачах для обучения сети могут потребоваться дни или даже недели, она может и вообще не обучиться. Причиной может быть одна из описанных ниже.

Градиентный спуск может найти локальный минимум вместо глобального

Паралич сети

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших выходных значениях, а производная активирующей функции будет очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть.

Локальные минимумы

Градиентный спуск с обратным распространением ошибок гарантирует нахождение только локального минимума функции; также, возникают проблемы с пересечением плато на поверхности функции ошибки.

Примечания

  • Алгоритм обучения многослойной нейронной сети методом обратного распространения ошибки
  • Neural Nets
  • Understanding backpropagation

См. также

  • Нейронные сети, перцептрон
  • Стохастический градиентный спуск
  • Настройка глубокой сети
  • Практики реализации нейронных сетей

Источники информации

  • https://en.wikipedia.org/wiki/Backpropagation
  • https://ru.wikipedia.org/wiki/Метод_обратного_распространения_ошибки

Нейронные сети обучаются с помощью тех или иных модификаций градиентного спуска, а чтобы применять его, нужно уметь эффективно вычислять градиенты функции потерь по всем обучающим параметрам. Казалось бы, для какого-нибудь запутанного вычислительного графа это может быть очень сложной задачей, но на помощь спешит метод обратного распространения ошибки.

Открытие метода обратного распространения ошибки стало одним из наиболее значимых событий в области искусственного интеллекта. В актуальном виде он был предложен в 1986 году Дэвидом Э. Румельхартом, Джеффри Э. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно красноярскими математиками С. И. Барцевым и В. А. Охониным. С тех пор для нахождения градиентов параметров нейронной сети используется метод вычисления производной сложной функции, и оценка градиентов параметров сети стала хоть сложной инженерной задачей, но уже не искусством. Несмотря на простоту используемого математического аппарата, появление этого метода привело к значительному скачку в развитии искусственных нейронных сетей.

Суть метода можно записать одной формулой, тривиально следующей из формулы производной сложной функции: если $f(x) = g_m(g_{m-1}(ldots (g_1(x)) ldots))$, то $frac{partial f}{partial x} = frac{partial g_m}{partial g_{m-1}}frac{partial g_{m-1}}{partial g_{m-2}}ldots frac{partial g_2}{partial g_1}frac{partial g_1}{partial x}$. Уже сейчас мы видим, что градиенты можно вычислять последовательно, в ходе одного обратного прохода, начиная с $frac{partial g_m}{partial g_{m-1}}$ и умножая каждый раз на частные производные предыдущего слоя.

Backpropagation в одномерном случае

В одномерном случае всё выглядит особенно просто. Пусть $w_0$ — переменная, по которой мы хотим продифференцировать, причём сложная функция имеет вид

$$f(w_0) = g_m(g_{m-1}(ldots g_1(w_0)ldots)),$$

где все $g_i$ скалярные. Тогда

$$f'(w_0) = g_m'(g_{m-1}(ldots g_1(w_0)ldots))cdot g’_{m-1}(g_{m-2}(ldots g_1(w_0)ldots))cdotldots cdot g’_1(w_0)$$

Суть этой формулы такова. Если мы уже совершили forward pass, то есть уже знаем

$$g_1(w_0), g_2(g_1(w_0)),ldots,g_{m-1}(ldots g_1(w_0)ldots),$$

то мы действуем следующим образом:

  • берём производную $g_m$ в точке $g_{m-1}(ldots g_1(w_0)ldots)$;

  • умножаем на производную $g_{m-1}$ в точке $g_{m-2}(ldots g_1(w_0)ldots)$;

  • и так далее, пока не дойдём до производной $g_1$ в точке $w_0$.

Проиллюстрируем это на картинке, расписав по шагам дифференцирование по весам $w_i$ функции потерь логистической регрессии на одном объекте (то есть для батча размера 1):

17_1.png

Собирая все множители вместе, получаем:

$$frac{partial f}{partial w_0} = (-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_1} = x_1cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_2} = x_2cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

Таким образом, мы видим, что сперва совершается forward pass для вычисления всех промежуточных значений (и да, все промежуточные представления нужно будет хранить в памяти), а потом запускается backward pass, на котором в один проход вычисляются все градиенты.

Почему же нельзя просто пойти и начать везде вычислять производные?

В главе, посвящённой матричным дифференцированиям, мы поднимаем вопрос о том, что вычислять частные производные по отдельности — это зло, лучше пользоваться матричными вычислениями. Но есть и ещё одна причина: даже и с матричной производной в принципе не всегда хочется иметь дело. Рассмотрим простой пример. Допустим, что $X^r$ и $X^{r+1}$ — два последовательных промежуточных представления $Ntimes M$ и $Ntimes K$, связанных функцией $X^{r+1} = f^{r+1}(X^r)$. Предположим, что мы как-то посчитали производную $frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$ функции потерь $mathcal{L}$, тогда

$$frac{partialmathcal{L}}{partial X^{r}_{st}} = sum_{i,j}frac{partial f^{r+1}_{ij}}{partial X^{r}_{st}}frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$$

И мы видим, что, хотя оба градиента $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ и $frac{partialmathcal{L}}{partial X_{st}^{r}}$ являются просто матрицами, в ходе вычислений возникает «четырёхмерный кубик» $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, даже хранить который весьма болезненно: уж больно много памяти он требует ($N^2MK$ по сравнению с безобидными $NM + NK$, требуемыми для хранения градиентов). Поэтому хочется промежуточные производные $frac{partial f^{r+1}}{partial X^{r}}$ рассматривать не как вычисляемые объекты $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, а как преобразования, которые превращают $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ в $frac{partialmathcal{L}}{partial X_{st}^{r}}$. Целью следующих глав будет именно это: понять, как преобразуется градиент в ходе error backpropagation при переходе через тот или иной слой.

  Вы спросите себя: надо ли мне сейчас пойти и прочитать главу учебника про матричное дифференцирование?

Встречный вопрос. Найдите производную функции по вектору $x$:

$$f(x) = x^TAx, Ain Mat_{n}{mathbb{R}}text{ — матрица размера }ntimes n$$

А как всё поменяется, если $A$ тоже зависит от $x$? Чему равен градиент функции, если $A$ является скаляром? Если вы готовы прямо сейчас взять ручку и бумагу и посчитать всё, то вам, вероятно, не надо читать про матричные дифференцирования. Но мы советуем всё-таки заглянуть в эту главу, если обозначения, которые мы будем дальше использовать, покажутся вам непонятными: единой нотации для матричных дифференцирований человечество пока, увы, не изобрело, и переводить с одной на другую не всегда легко.

Мы же сразу перейдём к интересующей нас вещи: к вычислению градиентов сложных функций.

Градиент сложной функции

Напомним, что формула производной сложной функции выглядит следующим образом:

$$left[D_{x_0} (color{#5002A7}{u} circ color{#4CB9C0}{v}) right](h) = color{#5002A7}{left[D_{v(x_0)} u right]} left( color{#4CB9C0}{left[D_{x_0} vright]} (h)right)$$

Теперь разберёмся с градиентами. Пусть $f(x) = g(h(x))$ – скалярная функция. Тогда

$$left[D_{x_0} f right] (x-x_0) = langlenabla_{x_0} f, x-x_0rangle.$$

С другой стороны,

$$left[D_{h(x_0)} g right] left(left[D_{x_0}h right] (x-x_0)right) = langlenabla_{h_{x_0}} g, left[D_{x_0} hright] (x-x_0)rangle = langleleft[D_{x_0} hright]^* nabla_{h(x_0)} g, x-x_0rangle.$$

То есть $color{#FFC100}{nabla_{x_0} f} = color{#348FEA}{left[D_{x_0} h right]}^* color{#FFC100}{nabla_{h(x_0)}}g$ — применение сопряжённого к $D_{x_0} h$ линейного отображения к вектору $nabla_{h(x_0)} g$.

Эта формула — сердце механизма обратного распространения ошибки. Она говорит следующее: если мы каким-то образом получили градиент функции потерь по переменным из некоторого промежуточного представления $X^k$ нейронной сети и при этом знаем, как преобразуется градиент при проходе через слой $f^k$ между $X^{k-1}$ и $X^k$ (то есть как выглядит сопряжённое к дифференциалу слоя между ними отображение), то мы сразу же находим градиент и по переменным из $X^{k-1}$:

17_2.png

Таким образом слой за слоем мы посчитаем градиенты по всем $X^i$ вплоть до самых первых слоёв.

Далее мы разберёмся, как именно преобразуются градиенты при переходе через некоторые распространённые слои.

Градиенты для типичных слоёв

Рассмотрим несколько важных примеров.

Примеры

  1. $f(x) = u(v(x))$, где $x$ — вектор, а $v(x)$ – поэлементное применение $v$:

    $$vbegin{pmatrix}
    x_1 \
    vdots\
    x_N
    end{pmatrix}
    = begin{pmatrix}
    v(x_1)\
    vdots\
    v(x_N)
    end{pmatrix}$$

    Тогда, как мы знаем,

    $$left[D_{x_0} fright] (h) = langlenabla_{x_0} f, hrangle = left[nabla_{x_0} fright]^T h.$$

    Следовательно,

    $$
    left[D_{v(x_0)} uright] left( left[ D_{x_0} vright] (h)right) = left[nabla_{v(x_0)} uright]^T left(v'(x_0) odot hright) =\
    $$

    $$
    = sumlimits_i left[nabla_{v(x_0)} uright]_i v'(x_{0i})h_i
    = langleleft[nabla_{v(x_0)} uright] odot v'(x_0), hrangle.
    ,$$

    где $odot$ означает поэлементное перемножение. Окончательно получаем

    $$color{#348FEA}{nabla_{x_0} f = left[nabla_{v(x_0)}uright] odot v'(x_0) = v'(x_0) odot left[nabla_{v(x_0)} uright]}$$

    Отметим, что если $x$ и $h(x)$ — это просто векторы, то мы могли бы вычислять всё и по формуле $frac{partial f}{partial x_i} = sum_jbig(frac{partial z_j}{partial x_i}big)cdotbig(frac{partial h}{partial z_j}big)$. В этом случае матрица $big(frac{partial z_j}{partial x_i}big)$ была бы диагональной (так как $z_j$ зависит только от $x_j$: ведь $h$ берётся поэлементно), и матричное умножение приводило бы к тому же результату. Однако если $x$ и $h(x)$ — матрицы, то $big(frac{partial z_j}{partial x_i}big)$ представлялась бы уже «четырёхмерным кубиком», и работать с ним было бы ужасно неудобно.

  2. $f(X) = g(XW)$, где $X$ и $W$ — матрицы. Как мы знаем,

    $$left[D_{X_0} f right] (X-X_0) = text{tr}, left(left[nabla_{X_0} fright]^T (X-X_0)right).$$

    Тогда

    $$
    left[ D_{X_0W} g right] left(left[D_{X_0} left( ast Wright)right] (H)right) =
    left[ D_{X_0W} g right] left(HWright)=\
    $$ $$
    = text{tr}, left( left[nabla_{X_0W} g right]^T cdot (H) W right) =\
    $$ $$
    =
    text{tr} , left(W left[nabla_{X_0W} (g) right]^T cdot (H)right) = text{tr} , left( left[left[nabla_{X_0W} gright] W^Tright]^T (H)right)
    $$

    Здесь через $ast W$ мы обозначили отображение $Y hookrightarrow YW$, а в предпоследнем переходе использовалось следующее свойство следа:

    $$
    text{tr} , (A B C) = text{tr} , (C A B),
    $$

    где $A, B, C$ — произвольные матрицы подходящих размеров (то есть допускающие перемножение в обоих приведённых порядках). Следовательно, получаем

    $$color{#348FEA}{nabla_{X_0} f = left[nabla_{X_0W} (g) right] cdot W^T}$$

  3. $f(W) = g(XW)$, где $W$ и $X$ — матрицы. Для приращения $H = W — W_0$ имеем

    $$
    left[D_{W_0} f right] (H) = text{tr} , left( left[nabla_{W_0} f right]^T (H)right)
    $$

    Тогда

    $$
    left[D_{XW_0} g right] left( left[D_{W_0} left(X astright) right] (H)right) = left[D_{XW_0} g right] left( XH right) =
    $$ $$
    = text{tr} , left( left[nabla_{XW_0} g right]^T cdot X (H)right) =
    text{tr}, left(left[X^T left[nabla_{XW_0} g right] right]^T (H)right)
    $$

    Здесь через $X ast$ обозначено отображение $Y hookrightarrow XY$. Значит,

    $$color{#348FEA}{nabla_{X_0} f = X^T cdot left[nabla_{XW_0} (g)right]}$$

  4. $f(X) = g(softmax(X))$, где $X$ — матрица $Ntimes K$, а $softmax$ — функция, которая вычисляется построчно, причём для каждой строки $x$

    $$softmax(x) = left(frac{e^{x_1}}{sum_te^{x_t}},ldots,frac{e^{x_K}}{sum_te^{x_t}}right)$$

    В этом примере нам будет удобно воспользоваться формализмом с частными производными. Сначала вычислим $frac{partial s_l}{partial x_j}$ для одной строки $x$, где через $s_l$ мы для краткости обозначим $softmax(x)_l = frac{e^{x_l}} {sum_te^{x_t}}$. Нетрудно проверить, что

    $$frac{partial s_l}{partial x_j} = begin{cases}
    s_j(1 — s_j), & j = l,
    -s_ls_j, & jne l
    end{cases}$$

    Так как softmax вычисляется независимо от каждой строчки, то

    $$frac{partial s_{rl}}{partial x_{ij}} = begin{cases}
    s_{ij}(1 — s_{ij}), & r=i, j = l,
    -s_{il}s_{ij}, & r = i, jne l,
    0, & rne i
    end{cases},$$

    где через $s_{rl}$ мы обозначили для краткости $softmax(X)_{rl}$.

    Теперь пусть $nabla_{rl} = nabla g = frac{partialmathcal{L}}{partial s_{rl}}$ (пришедший со следующего слоя, уже известный градиент). Тогда

    $$frac{partialmathcal{L}}{partial x_{ij}} = sum_{r,l}frac{partial s_{rl}}{partial x_{ij}} nabla_{rl}$$

    Так как $frac{partial s_{rl}}{partial x_{ij}} = 0$ при $rne i$, мы можем убрать суммирование по $r$:

    $$ldots = sum_{l}frac{partial s_{il}}{partial x_{ij}} nabla_{il} = -s_{i1}s_{ij}nabla_{i1} — ldots + s_{ij}(1 — s_{ij})nabla_{ij}-ldots — s_{iK}s_{ij}nabla_{iK} =$$

    $$= -s_{ij}sum_t s_{it}nabla_{it} + s_{ij}nabla_{ij}$$

    Таким образом, если мы хотим продифференцировать $f$ в какой-то конкретной точке $X_0$, то, смешивая математические обозначения с нотацией Python, мы можем записать:

    $$begin{multline*}
    color{#348FEA}{nabla_{X_0}f =}\
    color{#348FEA}{= -softmax(X_0) odot text{sum}left(
    softmax(X_0)odotnabla_{softmax(X_0)}g, text{ axis = 1}
    right) +}\
    color{#348FEA}{softmax(X_0)odot nabla_{softmax(X_0)}g}
    end{multline*}
    $$

Backpropagation в общем виде

Подытожим предыдущее обсуждение, описав алгоритм error backpropagation (алгоритм обратного распространения ошибки). Допустим, у нас есть текущие значения весов $W^i_0$ и мы хотим совершить шаг SGD по мини-батчу $X$. Мы должны сделать следующее:

  1. Совершить forward pass, вычислив и запомнив все промежуточные представления $X = X^0, X^1, ldots, X^m = widehat{y}$.
  2. Вычислить все градиенты с помощью backward pass.
  3. С помощью полученных градиентов совершить шаг SGD.

Проиллюстрируем алгоритм на примере двуслойной нейронной сети со скалярным output’ом. Для простоты опустим свободные члены в линейных слоях.

17_3.png Обучаемые параметры – матрицы $U$ и $W$. Как найти градиенты по ним в точке $U_0, W_0$?

$$nabla_{W_0}mathcal{L} = nabla_{W_0}{left({vphantom{frac12}mathcal{L}circ hcircleft[Wmapsto g(XU_0)Wright]}right)}=$$

$$=g(XU_0)^Tnabla_{g(XU_0)W_0}(mathcal{L}circ h) = underbrace{g(XU_0)^T}_{ktimes N}cdot
left[vphantom{frac12}underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes 1}odot
underbrace{nabla_{hleft(vphantom{int_0^1}g(XU_0)W_0right)}mathcal{L}}_{Ntimes 1}right]$$

Итого матрица $ktimes 1$, как и $W_0$

$$nabla_{U_0}mathcal{L} = nabla_{U_0}left(vphantom{frac12}
mathcal{L}circ hcircleft[Ymapsto YW_0right]circ gcircleft[ Umapsto XUright]
right)=$$

$$=X^Tcdotnabla_{XU^0}left(vphantom{frac12}mathcal{L}circ hcirc [Ymapsto YW_0]circ gright) =$$

$$=X^Tcdotleft(vphantom{frac12}g'(XU_0)odot
nabla_{g(XU_0)}left[vphantom{in_0^1}mathcal{L}circ hcirc[Ymapsto YW_0right]
right)$$

$$=ldots = underset{Dtimes N}{X^T}cdotleft(vphantom{frac12}
underbrace{g'(XU_0)}_{Ntimes K}odot
underbrace{left[vphantom{int_0^1}left(
underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes1}odotunderbrace{nabla_{h(vphantom{int_0^1}gleft(XU_0right)W_0)}mathcal{L}}_{Ntimes 1}
right)cdot underbrace{W^T}_{1times K}right]}_{Ntimes K}
right)$$

Итого $Dtimes K$, как и $U_0$

Схематически это можно представить следующим образом:

17_4.gif

Backpropagation для двуслойной нейронной сети

Подробнее о предыдущих вычисленияхЕсли вы не уследили за вычислениями в предыдущем примере, давайте более подробно разберём его чуть более конкретную версию (для $g = h = sigma$).

Рассмотрим двуслойную нейронную сеть для классификации. Мы уже встречали ее ранее при рассмотрении линейно неразделимой выборки. Предсказания получаются следующим образом:

$$
widehat{y} = sigma(X^1 W^2) = sigmaBig(big(sigma(X^0 W^1 )big) W^2 Big).
$$

Пусть $W^1_0$ и $W^2_0$ — текущее приближение матриц весов. Мы хотим совершить шаг по градиенту функции потерь, и для этого мы должны вычислить её градиенты по $W^1$ и $W^2$ в точке $(W^1_0, W^2_0)$.

Прежде всего мы совершаем forward pass, в ходе которого мы должны запомнить все промежуточные представления: $X^1 = X^0 W^1_0$, $X^2 = sigma(X^0 W^1_0)$, $X^3 = sigma(X^0 W^1_0) W^2_0$, $X^4 = sigma(sigma(X^0 W^1_0) W^2_0) = widehat{y}$. Они понадобятся нам дальше.

Для полученных предсказаний вычисляется значение функции потерь:

$$
l = mathcal{L}(y, widehat{y}) = y log(widehat{y}) + (1-y) log(1-widehat{y}).
$$

Дальше мы шаг за шагом будем находить производные по переменным из всё более глубоких слоёв.

  1. Градиент $mathcal{L}$ по предсказаниям имеет вид

    $$
    nabla_{widehat{y}}l = frac{y}{widehat{y}} — frac{1 — y}{1 — widehat{y}} = frac{y — widehat{y}}{widehat{y} (1 — widehat{y})},
    $$

    где, напомним, $ widehat{y} = sigma(X^3) = sigmaBig(big(sigma(X^0 W^1_0 )big) W^2_0 Big)$ (обратите внимание на то, что $W^1_0$ и $W^2_0$ тут именно те, из которых мы делаем градиентный шаг).

  2. Следующий слой — поэлементное взятие $sigma$. Как мы помним, при переходе через него градиент поэлементно умножается на производную $sigma$, в которую подставлено предыдущее промежуточное представление:

    $$
    nabla_{X^3}l = sigma'(X^3)odotnabla_{widehat{y}}l = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — widehat{y}}{widehat{y} (1 — widehat{y})} =
    $$

    $$
    = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — sigma(X^3)}{sigma(X^3) (1 — sigma(X^3))} =
    y — sigma(X^3)
    $$

  3. Следующий слой — умножение на $W^2_0$. В этот момент мы найдём градиент как по $W^2$, так и по $X^2$. При переходе через умножение на матрицу градиент, как мы помним, умножается с той же стороны на транспонированную матрицу, а значит:

    $$
    color{blue}{nabla_{W^2_0}l} = (X^2)^Tcdot nabla_{X^3}l = (X^2)^Tcdot(y — sigma(X^3)) =
    $$

    $$
    = color{blue}{left( sigma(X^0W^1_0) right)^T cdot (y — sigma(sigma(X^0W^1_0)W^2_0))}
    $$

    Аналогичным образом

    $$
    nabla_{X^2}l = nabla_{X^3}lcdot (W^2_0)^T = (y — sigma(X^3))cdot (W^2_0)^T =
    $$

    $$
    = (y — sigma(X^2W_0^2))cdot (W^2_0)^T
    $$

  4. Следующий слой — снова взятие $sigma$.

    $$
    nabla_{X^1}l = sigma'(X^1)odotnabla_{X^2}l = sigma(X^1)left( 1 — sigma(X^1) right) odot left( (y — sigma(X^2W_0^2))cdot (W^2_0)^T right) =
    $$

    $$
    = sigma(X^1)left( 1 — sigma(X^1) right) odotleft( (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^T right)
    $$

  5. Наконец, последний слой — это умножение $X^0$ на $W^1_0$. Тут мы дифференцируем только по $W^1$:

    $$
    color{blue}{nabla_{W^1_0}l} = (X^0)^Tcdot nabla_{X^1}l = (X^0)^Tcdot big( sigma(X^1) left( 1 — sigma(X^1) right) odot (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^Tbig) =
    $$

    $$
    = color{blue}{(X^0)^Tcdotbig(sigma(X^0W^1_0)left( 1 — sigma(X^0W^1_0) right) odot (y — sigma(sigma(X^0W^1_0)W_0^2))cdot (W^2_0)^Tbig) }
    $$

Итоговые формулы для градиентов получились страшноватыми, но они были получены друг из друга итеративно с помощью очень простых операций: матричного и поэлементного умножения, в которые порой подставлялись значения заранее вычисленных промежуточных представлений.

Автоматизация и autograd

Итак, чтобы нейросеть обучалась, достаточно для любого слоя $f^k: X^{k-1}mapsto X^k$ с параметрами $W^k$ уметь:

  • превращать $nabla_{X^k_0}mathcal{L}$ в $nabla_{X^{k-1}_0}mathcal{L}$ (градиент по выходу в градиент по входу);
  • считать градиент по его параметрам $nabla_{W^k_0}mathcal{L}$.

При этом слою совершенно не надо знать, что происходит вокруг. То есть слой действительно может быть запрограммирован как отдельная сущность, умеющая внутри себя делать forward pass и backward pass, после чего слои механически, как кубики в конструкторе, собираются в большую сеть, которая сможет работать как одно целое.

Более того, во многих случаях авторы библиотек для глубинного обучения уже о вас позаботились и создали средства для автоматического дифференцирования выражений (autograd). Поэтому, программируя нейросеть, вы почти всегда можете думать только о forward-проходе, прямом преобразовании данных, предоставив библиотеке дифференцировать всё самостоятельно. Это делает код нейросетей весьма понятным и выразительным (да, в реальности он тоже бывает большим и страшным, но сравните на досуге код какой-нибудь разухабистой нейросети и код градиентного бустинга на решающих деревьях и почувствуйте разницу).

Но это лишь начало

Метод обратного распространения ошибки позволяет удобно посчитать градиенты, но дальше с ними что-то надо делать, и старый добрый SGD едва ли справится с обучением современной сетки. Так что же делать? О некоторых приёмах мы расскажем в следующей главе.

В прошлой главе мы видели, как нейросети могут самостоятельно обучаться весам и смещениям с использованием алгоритма градиентного спуска. Однако в нашем объяснении имелся пробел: мы не обсуждали подсчёт градиента функции стоимости. А это приличный пробел! В этой главе я расскажу быстрый алгоритм для вычисления подобных градиентов, известный, как обратное распространение.

Впервые алгоритм обратного распространения придумали в 1970-х, но его важность не была до конца осознана вплоть до знаменитой работы 1986 года, которую написали Дэвид Румельхарт, Джоффри Хинтон и Рональд Уильямс. В работе описано несколько нейросетей, в которых обратное распространение работает гораздо быстрее, чем в более ранних подходах к обучению, из-за чего с тех пор можно было использовать нейросеть для решения ранее неразрешимых проблем. Сегодня алгоритм обратного распространения – рабочая лошадка обучения нейросети.

Эта глава содержит больше математики, чем все остальные в книге. Если вам не особенно по нраву математика, у вас может возникнуть искушение пропустить эту главу и просто относиться к обратному распространению, как к чёрному ящику, подробности работы которого вы готовы игнорировать. Зачем тратить время на их изучение?

Причина, конечно, в понимании. В основе обратного распространения лежит выражение частной производной ∂C / ∂w функции стоимости C по весу w (или смещению b) сети. Выражение показывает, насколько быстро меняется стоимость при изменении весов и смещений. И хотя это выражение довольно сложное, у него есть своя красота, ведь у каждого его элемента есть естественная и интуитивная интерпретация. Поэтому обратное распространение – не просто быстрый алгоритм для обучения. Он даёт нам подробное понимание того, как изменение весов и смещений меняет всё поведение сети. А это стоит того, чтобы изучить подробности.

Учитывая всё это, если вы хотите просто пролистать эту главу или перепрыгнуть к следующей, ничего страшного. Я написал остальную книгу так, чтобы она была понятной, даже если считать обратное распространение чёрным ящиком. Конечно, позднее в книге будут моменты, с которых я делаю отсылки к результатам этой главы. Но в тот момент вам должны быть понятны основные заключения, даже если вы не отслеживали все рассуждения.

Для разогрева: быстрый матричный подход вычисления выходных данных нейросети

Перед обсуждением обратного распространения, давайте разогреемся быстрым матричным алгоритмом для вычисления выходных данных нейросети. Мы вообще-то уже встречались с этим алгоритмом к концу предыдущей главы, но я описал его быстро, поэтому его стоит заново рассмотреть подробнее. В частности, это будет хороший способ приспособиться к записи, используемой в обратном распространении, но в знакомом контексте.

Начнём с записи, позволяющей нам недвусмысленно обозначать веса в сети. Мы будем использовать wljk для обозначения веса связи нейрона №k в слое №(l-1) с нейроном №j в слое №l. Так, к примеру, на диаграмме ниже показан вес связи четвёртого нейрона второго слоя со вторым нейроном третьего слоя:

Сначала такая запись кажется неуклюжей, и требует некоторых усилий на привыкание. Однако вскоре она покажется вам простой и естественной. Одна её особенность – порядок индексов j и k. Вы могли бы решить, что разумнее было бы использовать j для обозначения входного нейрона, а k – для выходного, а не наоборот, как у нас. Причину такой особенности я объясню ниже.

Сходные обозначения мы будем использовать для смещений и активаций сети. В частности, blj будет обозначать смещение нейрона №j в слое №l. alj будет обозначать активацию нейрона №j в слое №l. На следующей диаграмме показаны примеры использования этой записи:

С такой записью активация alj нейрона №j в слое №l связана с активацией в слое №(l-1) следующим уравнением (сравните с уравнением (4) и его обсуждением в прошлой главе):

$ a^l_j = sigma (sum_k w^l_{jk} a^{l−1}_k + b^l_j) tag{23} $

где сумма идёт по всем нейронам k в слое (l-1). Чтобы перезаписать это выражение в матричном виде, мы определим матрицу весов wl для каждого слоя l. Элементы матрицы весов – это просто веса, соединённые со слоем №l, то есть, элемент в строке №j и столбце №k будет wljk. Сходным образом для каждого слоя l мы определяем вектор смещения bl. Вы, наверное, догадались, как это работает – компонентами вектора смещения будут просто значения blj, по одному компоненту для каждого нейрона в слое №l. И, наконец, мы определим вектор активации al, компонентами которого будут активации alj.

Последним ингредиентом, необходимым для того, чтобы перезаписать (23), будет матричная форма векторизации функции σ. С векторизацией мы вскользь столкнулись в прошлой главе – идея в том, что мы хотим применить функцию σ к каждому элементу вектора v. Мы используем очевидную запись σ(v) для обозначения поэлементного применения функции. То есть, компонентами σ(v) будут просто σ(v)j = σ(vj). Для примера, если у нас есть функция f(x) = x2, то векторизованная форма f даёт нам

$ f( begin{bmatrix} 2\ 3 end{bmatrix} ) = begin{bmatrix} f(2)\ f(3) end{bmatrix} = begin{bmatrix} 4\ 9 end{bmatrix} tag{24} $

то есть, векторизованная f просто возводит в квадрат каждый элемент вектора.

Учитывая все эти формы записи, уравнение (23) можно переписать в красивой и компактной векторизованной форме:

$ a^l = sigma(w^l a^{l−1} + b^l) tag{25} $

Такое выражение позволяет нам более глобально взглянуть на связь активаций одного слоя с активациями предыдущего: мы просто применяем матрицу весов к активациям, добавляем вектор смещения и потом применяем сигмоиду. Кстати, именно эта запись и требует использования записи wljk. Если бы мы использовали индекс j для обозначения входного нейрона, а k для выходного, нам пришлось бы заменить матрицу весов в уравнении (25) на транспонированную. Это небольшое, но раздражающее изменение, и мы бы потеряли простоту заявления (и размышления) о «применении матрицы весов к активациям». Такой глобальный подход проще и лаконичнее (и использует меньше индексов!), чем понейронный. Это просто способ избежать индексного ада, не теряя точности обозначения происходящего. Также это выражение полезно на практике, поскольку большинство матричных библиотек предлагают быстрые способы перемножения матриц, сложения векторов и векторизации. Код в прошлой главе непосредственно пользовался этим выражением для вычисления поведения сети.

Используя уравнение (25) для вычисления al, мы вычисляем промежуточное значение zl ≡ wlal−1+bl. Эта величина оказывается достаточно полезной для именования: мы называем zl взвешенным входом нейронов слоя №l. Позднее мы активно будем использовать этот взвешенный вход. Уравнение (25) иногда записывают через взвешенный вход, как al = σ(zl). Стоит также отметить, что у zl есть компоненты $ z^l_j = sum_k w^l_{jk} a^{l−1}_k + b^l_j $, то есть, zlj — это всего лишь взвешенный вход функции активации нейрона j в слое l.

Два необходимых предположения по поводу функции стоимости

Цель обратного распространения – вычислить частные производные ∂C/∂w и ∂C/∂b функции стоимости C для каждого веса w и смещения b сети. Чтобы обратное распространение сработало, нам необходимо сделать два главных предположения по поводу формы функции стоимости. Однако перед этим полезно будет представлять себе пример функции стоимости. Мы используем квадратичную функцию из прошлой главы (уравнение (6)). В записи из предыдущего раздела она будет иметь вид

$ C = frac{1}{2n}sum_x ||y(x) − a^L(x)||^2 tag{26} $

где: n – общее количество обучающих примеров; сумма идёт по всем примерам x; y=y(x) – необходимые выходные данные; L обозначает количество слоёв в сети; aL = aL (x) – вектор выхода активаций сети, когда на входе x.

Ладно, так какие нам нужны предположения касательно функции стоимости С, чтобы применять обратное распространение? Первое – функцию стоимости можно записать как среднее C = 1/n ∑x Cx функций стоимости Cx для отдельных обучающих примеров x. Это выполняется в случае квадратичной функции стоимости, где стоимость одного обучающего примера Cx = 1/2 ||y − aL||2. Это предположение будет верным и для всех остальных функций стоимости, которые встретятся нам в книге.

Это предположение нужно нам потому, что на самом деле обратное распространение позволяет нам вычислять частные производные ∂C/∂w и ∂C/∂b, усредняя по обучающим примерам. Приняв это предположение, мы предположим, что обучающий пример x фиксирован, и перестанем указывать индекс x, записывая стоимость Cx как C. Потом мы вернём x, но пока что лучше его просто подразумевать.

Второе предположение касательно функции стоимости – её можно записать как функцию выхода нейросети:

К примеру, квадратичная функция стоимости удовлетворяет этому требованию, поскольку квадратичную стоимость одного обучающего примера x можно записать, как

$ C = 1/2 || y−a^L ||^2 = 1/2 sum_j (y_j − a^L_j)^2 tag{27} $

что и будет функцией выходных активаций. Конечно, эта функция стоимости также зависит от желаемого выхода y, и вы можете удивиться, почему мы не рассматриваем C как функцию ещё и от y. Однако вспомним, что входной обучающий пример x фиксирован, поэтому выход y тоже фиксирован. В частности, его мы не можем изменить, меняя веса и смещения, то есть, это не то, что выучивает нейросеть. Поэтому имеет смысл считать C функцией от только выходных активаций aL, а y – просто параметром, помогающим её определять.

Произведение Адамара s⊙t

Алгоритм обратного распространения основан на обычных операциях линейной алгебры – сложении векторов, умножении вектора на матрицу, и т.д. Однако одна из операций используется менее часто. Допустим, s и t – два вектора одной размерности. Тогда через s⊙t мы обозначим поэлементное перемножение двух векторов. Тогда компоненты s⊙t будут просто (s⊙t)j = sjtj. Например:

$ begin{bmatrix} 1\ 2 end{bmatrix} odot begin{bmatrix} 3\ 4 end{bmatrix} = begin{bmatrix} 1 * 3\ 2 * 4 end{bmatrix} = begin{bmatrix} 3\ 8 end{bmatrix} tag{28} $

Такое поэлементное произведение иногда называют произведением Адамара или произведением Шура. Мы будем называть его произведением Адамара. Хорошие библиотеки для работы с матрицами обычно имеют быструю реализацию произведения Адамара, и это бывает удобно при реализации обратного распространения.

Четыре фундаментальных уравнения в основе обратного распространения

Обратное распространение связано с пониманием того, как изменение весов и смещений сети меняет функцию стоимости. По сути, это означает подсчёт частных производных ∂C/∂wljk и ∂C/∂blj. Но для их вычисления сначала мы вычисляем промежуточное значение δlj, которую мы называем ошибкой в нейроне №j в слое №l. Обратное распространение даст нам процедуру для вычисления ошибки δlj, а потом свяжет δlj с ∂C/∂wljk и ∂C/∂blj.

Чтобы понять, как определяется ошибка, представьте, что в нашей нейросети завёлся демон:

Он сидит на нейроне №j в слое №l. При поступлении входных данных демон нарушает работу нейрона. Он добавляет небольшое изменение Δzlj к взвешенному входу нейрона, и вместо того, чтобы выдавать σ(zlj), нейрон выдаст σ(zlj + Δzlj). Это изменение распространится и через следующие слои сети, что в итоге изменит общую стоимость на (∂C/∂zlj) * Δzlj.

Но наш демон хороший, и он пытается помочь вам улучшить стоимость, то есть, найти Δzlj, уменьшающее стоимость. Допустим, значение ∂C/∂zlj велико (положительное или отрицательное). Тогда демон может серьёзно уменьшить стоимость, выбрав Δzlj со знаком, противоположным ∂C/∂zlj. А если же ∂C/∂zlj близко к нулю, тогда демон не может сильно улучшить стоимость, меняя взвешенный вход zlj. Так что, с точки зрения демона, нейрон уже близок к оптимуму (это, конечно, верно только для малых Δzlj. Допустим, таковы ограничения действий демона). Поэтому в эвристическом смысле ∂C/∂zlj является мерой ошибки нейрона.

Под мотивацией от этой истории определим ошибку δlj нейрона j в слое l, как

$ delta l_j equiv frac{partial C}{partial z^l_j} tag{29} $

По обычному нашему соглашению мы используем δl для обозначения вектора ошибок, связанного со слоем l. Обратное распространение даст нам способ подсчитать δl для любого слоя, а потом соотнести эти ошибки с теми величинами, которые нас реально интересуют, ∂C/∂wljk и ∂C/∂blj.

Вас может интересовать, почему демон меняет взвешенный вход zlj. Ведь было бы естественнее представить, что демон изменяет выходную активацию alj, чтобы мы использовали ∂C/∂alj в качестве меры ошибки. На самом деле, если сделать так, то всё получается очень похожим на то, что мы будем обсуждать дальше. Однако в этом случае представление обратного распространения будет алгебраически чуть более сложным. Поэтому мы остановимся на варианте δlj = ∂C/∂zlj в качестве меры ошибки.

В задачах классификации термин «ошибка» иногда означает количество неправильных классификаций. К примеру, если нейросеть правильно классифицирует 96,0% цифр, то ошибка будет равна 4,0%. Очевидно, это совсем не то, что мы имеем в виду под векторами δ. Но на практике обычно можно без труда понять, какое значение имеется в виду.

План атаки: обратное распространение основано на четырёх фундаментальных уравнениях. Совместно они дают нам способ вычислить как ошибку δl, так и градиент функции стоимости. Я привожу их ниже. Не нужно ожидать их мгновенного освоения. Вы будете разочарованы. Уравнения обратного распространения настолько глубоки, что для хорошего их понимания требуется ощутимое время и терпение, и постепенное углубление в вопрос. Хорошие новости в том, что это терпение окупится сторицей. Поэтому в данном разделе наши рассуждения только начинаются, помогая вам идти по пути глубокого понимания уравнений.

Вот схема того, как мы будем углубляться в эти уравнения позже: я дам их краткое доказательство, помогающее объяснить, почему они верны; мы перепишем их в алгоритмической форме в виде псевдокода, и увидим, как реализовать его в реальном коде на python; в последней части главы мы выработаем интуитивное представление о значении уравнений обратного распространения, и о том, как их можно найти с нуля. Мы будем периодически возвращаться к четырём фундаментальным уравнениям, и чем глубже вы будете их понимать, тем более комфортными, и возможно, красивыми и естественными они будут вам казаться.

Уравнение ошибки выходного слоя, δL: компоненты δL считаются, как

$ delta^L_j = frac{partial C}{partial a^L_j} sigma' (z^L_j) tag{BP1} $

Очень естественное выражение. Первый член справа, ∂C / ∂aLj, измеряет, насколько быстро стоимость меняется как функция выходной активации №j. Если, к примеру, C не особенно зависит от конкретного выходного нейрона j, тогда δLj будет малым, как и ожидается. Второй член справа, σ'(zLj), измеряет, насколько быстро функция активации σ меняется в zLj.

Заметьте, что всё в (BP1) легко подсчитать. В частности, мы вычисляем zLj при подсчёте поведения сети, и на вычисление σ'(zLj) уйдёт незначительно больше ресурсов. Конечно, точная форма ∂C / ∂aLj зависит от формы функции стоимость. Однако, если функция стоимости известна, то не должно быть проблем с вычислением ∂C / ∂aLj. К примеру, если мы используем квадратичную функцию стоимости, тогда C = 1/2 ∑j (yj − aLj)2, поэтому ∂C / ∂aLj = (aLj − yj), что легко подсчитать.

Уравнение (BP1) – это покомпонентное выражение δL. Оно совершенно нормальное, но не записано в матричной форме, которая нужна нам для обратного распространения. Однако, его легко переписать в матричной форме, как

$ delta^L =nabla_a C odot sigma'(z^L) tag{BP1a} $

Здесь ∇a C определяется, как вектор, чьими компонентами будут частные производные ∂C / ∂aLj. Его можно представлять, как выражение скорости изменения C по отношению к выходным активациям. Легко видеть, что уравнения (BP1a) и (BP1) эквивалентны, поэтому далее мы будем использовать (BP1) для отсылки к любому из них. К примеру, в случае с квадратичной стоимостью, у нас будет ∇a C = (aL — y), поэтому полной матричной формой (BP1) будет

$ delta^L = (a^L - y) odot sigma'(z^L) tag{30} $

Всё в этом выражении имеет удобную векторную форму, и его легко вычислить при помощи такой библиотеки, как, например, Numpy.

Выражение ошибки δl через ошибку в следующем слое, δl+1: в частности,

$ delta^l = ((w^{l+1})^T delta^{l+1}) cdot sigma'(z^l) tag{BP2} $

где (wl+1)T — транспонирование весовой матрицы wl+1 для слоя №(l+1). Уравнение кажется сложным, но каждый его элемент легко интерпретировать. Допустим, мы знаем ошибку δl+1 для слоя (l+1). Транспонирование весовой матрицы, (wl+1)T, можно представить себе, как перемещение ошибки назад по сети, что даёт нам некую меру ошибки на выходе слоя №l. Затем мы считаем произведение Адамара ⊙σ'(zl). Это продвигает ошибку назад через функцию активации в слое l, давая нам значение ошибки δl во взвешенном входе для слоя l.

Комбинируя (BP2) с (BP1), мы можем подсчитать ошибку δl для любого слоя сети. Мы начинаем с использования (BP1) для подсчёта δL, затем применяем уравнение (BP2) для подсчёта δL-1, затем снова для подсчёта δL-2, и так далее, до упора по сети в обратную сторону.

Уравнение скорости изменения стоимости по отношению к любому смещению в сети: в частности:

$ frac{partial C}{partial b^l_j} = delta^l_j tag{BP3} $

То есть, ошибка δlj точно равна скорости изменения ∂C / ∂blj. Это превосходно, поскольку (BP1) и (BP2) уже рассказали нам, как подсчитывать δlj. Мы можем перезаписать (BP3) короче, как

$ frac{partial C}{partial b} = delta tag{31} $

где δ оценивается для того же нейрона, что и смещение b.

Уравнение для скорости изменения стоимости по отношению к любому весу в сети: в частности:

$ frac{partial C}{partial w^l_{jk}} = a^{l-1}_k delta^l_j tag{BP4} $

Отсюда мы узнаём, как подсчитать частную производную ∂C/∂wljk через значения δl и al-1, способ расчёта которых нам уже известен. Это уравнение можно переписать в менее загруженной индексами форме:

$ frac{partial C}{partial w} = a_{rm in} delta_{rm out} tag{32} $

где ain — активация нейронного входа для веса w, а δout — ошибка нейронного выхода от веса w. Если подробнее посмотреть на вес w и два соединённых им нейрона, то можно будет нарисовать это так:

Приятное следствие уравнения (32) в том, что когда активация ain мала, ain ≈ 0, член градиента ∂C/∂w тоже стремится к нулю. В таком случае мы говорим, что вес обучается медленно, то есть, не сильно меняется во время градиентного спуска. Иначе говоря, одним из следствий (BP4) будет то, что весовой выход нейронов с низкой активацией обучается медленно.

Из (BP1)-(BP4) можно почерпнуть и другие идеи. Начнём с выходного слоя. Рассмотрим член σ'(zLj) в (BP1). Вспомним из графика сигмоиды из прошлой главы, что она становится плоской, когда σ(zLj) приближается к 0 или 1. В данных случаях σ'(zLj) ≈ 0. Поэтому вес в последнем слое будет обучаться медленно, если активация выходного нейрона мала (≈ 0) или велика (≈ 1). В таком случае обычно говорят, что выходной нейрон насыщен, и в итоге вес перестал обучаться (или обучается медленно). Те же замечания справедливы и для смещений выходного нейрона.

Сходные идеи можно получить и касательно более ранних слоёв. В частности, рассмотрим член σ'(zl) в (BP2). Это значит, что δlj, скорее всего, будет малой при приближении нейрона к насыщению. А это, в свою очередь, означает, что любые веса на входе насыщенного нейрона будут обучаться медленно (правда, это не сработает, если у wl+1Tδl+1 будут достаточно большие элементы, компенсирующие небольшое значение σ'(zLj)).

Подытожим: мы узнали, что вес будет обучаться медленно, если либо активация входного нейрона мала, либо выходной нейрон насыщен, то есть его активация мала или велика.

В этом нет ничего особенно удивительного. И всё же, эти наблюдения помогают улучшить наше представление о том, что происходит при обучении сети. Более того, мы можем подойти к этим рассуждениям с обратной стороны. Четыре фундаментальных уравнения справедливы для любой функции активации, а не только для стандартной сигмоиды (поскольку, как мы увидим далее, в доказательствах не используются свойства сигмоиды). Поэтому эти уравнения можно использовать для разработки функций активации с определёнными нужными свойствами обучения. Для примера, допустим, мы выбрали функцию активации σ, непохожую на сигмоиду, такую, что σ’ всегда положительна и не приближается к нулю. Это предотвратить замедление обучения, происходящее при насыщении обычных сигмоидных нейронов. Позднее в книге мы увидим примеры, где функция активации меняется подобным образом. Учитывая уравнения (BP1)-(BP4), мы можем объяснить, зачем нужны такие модификации, и как они могут повлиять на ситуацию.


Итог: уравнения обратного распространения

Задачи

  • Альтернативная запись уравнений обратного распространения. Я записал уравнения обратного распространения с использованием произведения Адамара. Это может сбить с толку людей, не привыкших к этому произведению. Есть и другой подход, на основе обычного перемножения матриц, который может оказаться поучительным для некоторых читателей. Покажите, что (BP1) можно переписать, как

$ delta^L = Sigma'(z^L) nabla_a C tag{33} $

где Σ'(zL) – квадратная матрица, у которой по диагонали расположены значения σ'(zLj), а другие элементы равны 0. Учтите, что эта матрица взаимодействует с ∇a C через обычное перемножение матриц.

Покажите, что (BP2) можно переписать, как

$ delta^l = Sigma'(z^l) (w^{l+1})^T delta^{l+1} tag{34} $

Комбинируя предыдущие задачи, покажите, что:

$ delta^l = Sigma'(z^l) (w^{l+1})^T ldots Sigma'(z^{L-1}) (w^L)^T Sigma'(z^L) nabla_a C tag{35} $

Для читателей, привычных к матричному перемножению, это уравнение будет легче понять, чем (BP1) и (BP2). Я концентрируюсь на (BP1) и (BP2) потому, что этот подход оказывается быстрее реализовать численно. [здесь Σ — это не сумма (∑), а заглавная σ (сигма) / прим. перев.]

Доказательство четырёх фундаментальных уравнений (необязательный раздел)

Теперь докажем четыре фундаментальных уравнения (BP1)-(BP4). Все они являются следствиями цепного правила (правила дифференцирования сложной функции) из анализа функций многих переменных. Если вы хорошо знакомы с цепным правилом, настоятельно рекомендую попробовать посчитать производные самостоятельно перед тем, как продолжить чтение.

Начнём с уравнения (BP1), которое даёт нам выражение для выходной ошибки δL. Чтобы доказать его, вспомним, что, по определению:

$ delta^L_j = frac{partial C}{partial z^L_j} tag{36} $

Применяя цепное правило, перепишем частные производные через частные производные по выходным активациям:

$ delta^L_j = sum_k frac{partial C}{partial a^L_k} frac{partial a^L_k}{partial z^L_j} tag{37} $

где суммирование идёт по всем нейронам k в выходном слое. Конечно, выходная активация aLk нейрона №k зависит только от взвешенного входа zLj для нейрона №j, когда k=j. Поэтому ∂aLk / ∂zLj исчезает, когда k ≠ j. В итоге мы упрощаем предыдущее уравнение до

$ delta^L_j = frac{partial C}{partial a^L_j} frac{partial a^L_j}{partial z^L_j} tag{38} $

Вспомнив, что aLj = σ(zLj), мы можем переписать второй член справа, как σ'(zLj), и уравнение превращается в

$ delta^L_j = frac{partial C}{partial a^L_j} sigma'(z^L_j) tag{39} $

то есть, в (BP1) в покомпонентном виде.

Затем докажем (BP2), дающее уравнение для ошибки δl через ошибку в следующем слое δl+1. Для этого нам надо переписать δlj = ∂C / ∂zlj через δl+1k = ∂C / ∂zl+1k. Это можно сделать при помощи цепного правила:

$ delta^l_j = frac{partial C}{partial z^l_j} tag{40} $

$ = sum_k frac{partial C}{partial z^{l+1}_k} frac{partial z^{l+1}_k}{partial z^l_j} tag{41} $

$ = sum_k frac{partial z^{l+1}_k}{partial z^l_j} delta^{l+1}_k tag{42} $

где в последней строчке мы поменяли местами два члена справа, и подставили определение δl+1k. Чтобы вычислить первый член на последней строчке, отметим, что

$ z^{l+1}_k = sum_j w^{l+1}_{kj} a^l_j +b^{l+1}_k = sum_j w^{l+1}_{kj} sigma(z^l_j) +b^{l+1}_k tag{43} $

Продифференцировав, получим

$ frac{partial z^{l+1}_k}{partial z^l_j} = w^{l+1}_{kj} sigma'(z^l_j). tag{44} $

Подставив это в (42), получим

$ delta^l_j = sum_k w^{l+1}_{kj} delta^{l+1}_k sigma'(z^l_j). tag{45} $

То есть, (BP2) в покомпонентной записи.

Остаётся доказать (BP3) и (BP4). Они тоже следуют из цепного правила, примерно таким же методом, как и два предыдущих. Оставлю их вам в качестве упражнения.

Упражнение

  • Докажите (BP3) и (BP4).

Вот и всё доказательство четырёх фундаментальных уравнений обратного распространения. Оно может показаться сложным. Но на самом деле это просто результат аккуратного применения цепного правила. Говоря менее лаконично, обратное распространение можно представить себе, как способ подсчёта градиента функции стоимости через систематическое применение цепного правила из анализа функций многих переменных. И это реально всё, что представляет собой обратное распространение – остальное просто детали.

Алгоритм обратного распространения

Уравнения обратного распространения дают нам метод подсчёта градиента функции стоимости. Давайте запишем это явно в виде алгоритма:

  1. Вход x: назначить соответствующую активацию a1 для входного слоя.
  2. Прямое распространение: для каждого l = 2,3,…,L вычислить zl = wlal−1+bl и al = σ(zl).
  3. Выходная ошибка δL: вычислить вектор δL = ∇a C ⊙ σ'(zL).
  4. Обратное распространение ошибки: для каждого l = L−1,L−2,…,2 вычислить δl = ((wl+1)Tδl+1) ⊙ σ'(zl).
  5. Выход: градиент функции стоимости задаётся $frac{partial C}{partial w^l_{jk}} = a^{l-1}_k delta^l_j$ и $frac{partial C}{partial b^l_j} = delta^l_j$.

Посмотрев на алгоритм, вы поймёте, почему он называется обратное распространение. Мы вычисляем векторы ошибки δl задом наперёд, начиная с последнего слоя. Может показаться странным, что мы идём по сети назад. Но если подумать о доказательстве обратного распространения, то обратное движение является следствием того, что стоимость – это функция выхода сети. Чтобы понять, как меняется стоимость в зависимости от ранних весов и смещений, нам нужно раз за разом применять цепное правило, идя назад через слои, чтобы получить полезные выражения.

Упражнения

  • Обратное распространение с одним изменённым нейроном. Допустим, мы изменили один нейрон в сети с прямым распространением так, чтобы его выход был f(∑j wjxj+b), где f – некая функция, не похожая на сигмоиду. Как нам поменять алгоритм обратного распространения в данном случае?
  • Обратное распространение с линейными нейронами. Допустим, мы заменим обычную нелинейную сигмоиду на σ(z) = z по всей сети. Перепишите алгоритм обратного распространения для данного случая.

Как я уже пояснял ранее, алгоритм обратного распространения вычисляет градиент функции стоимости для одного обучающего примера, C = Cx. На практике часто комбинируют обратное распространение с алгоритмом обучения, например, со стохастическим градиентным спуском, когда мы подсчитываем градиент для многих обучающих примеров. В частности, при заданном мини-пакете m обучающих примеров, следующий алгоритм применяет градиентный спуск на основе этого мини-пакета:

  1. Вход: набор обучающих примеров.
  2. Для каждого обучающего примера x назначить соответствующую входную активацию ax,1 и выполнить следующие шаги:
    • Прямое распространение для каждого l=2,3,…,L вычислить zx,l = wlax,l−1+bl и ax,l = σ(zx,l).
    • Выходная ошибка δx,L: вычислить вектор δx,L = ∇a Cx ⋅ σ'(zx,L).
    • Обратное распространение ошибки: для каждого l=L−1,L−2,…,2 вычислить δx,l = ((wl+1)Tδx,l+1) ⋅ σ'(zx,l).
  3. Градиентный спуск: для каждого l=L,L−1,…,2 обновить веса согласно правилу $w^l rightarrow w^l-frac{eta}{m} sum_x delta^{x,l} (a^{x,l-1})^T$, и смещения согласно правилу $b^l rightarrow b^l-frac{eta}{m} sum_x delta^{x,l}$.

Конечно, для реализации стохастического градиентного спуска на практике также понадобится внешний цикл, генерирующий мини-пакеты обучающих примеров, и внешний цикл, проходящий по нескольким эпохам обучения. Для простоты я их опустил.

Код для обратного распространения

Поняв абстрактную сторону обратного распространения, теперь мы можем понять код, использованный в предыдущей главе, реализующий обратное распространение. Вспомним из той главы, что код содержался в методах update_mini_batch и backprop класс Network. Код этих методов – прямой перевод описанного выше алгоритма. В частности, метод update_mini_batch обновляет веса и смещения сети, подсчитывая градиент для текущего mini_batch обучающих примеров:

class Network(object):
...
    def update_mini_batch(self, mini_batch, eta):
        """Обновить веса и смещения сети, применяя градиентный спуск с использованием обратного распространения к одному мини-пакету. mini_batch – это список кортежей (x, y), а eta – скорость обучения."""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        for x, y in mini_batch:
            delta_nabla_b, delta_nabla_w = self.backprop(x, y)
            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
        self.weights = [w-(eta/len(mini_batch))*nw 
                        for w, nw in zip(self.weights, nabla_w)]
        self.biases = [b-(eta/len(mini_batch))*nb 
                       for b, nb in zip(self.biases, nabla_b)]

Большую часть работы делают строки delta_nabla_b, delta_nabla_w = self.backprop(x, y), использующие метод backprop для подсчёта частных производных ∂Cx/∂blj и ∂Cx/∂wljk. Метод backprop почти повторяет алгоритм предыдущего раздела. Есть одно небольшое отличие – мы используем немного другой подход к индексированию слоёв. Это сделано для того, чтобы воспользоваться особенностью python, отрицательными индексами массива, позволяющими отсчитывать элементы назад, с конца. l[-3] будет третьим элементом с конца массива l. Код backprop приведён ниже, вместе со вспомогательными функциями, используемыми для подсчёта сигмоиды, её производной и производной функции стоимости. С ними код получается законченным и понятным. Если что-то неясно, обратитесь к первому описанию кода с полным листингом.

class Network(object):
...
   def backprop(self, x, y):
        """Вернуть кортеж ``(nabla_b, nabla_w)``, представляющий градиент для функции стоимости C_x.  ``nabla_b`` и ``nabla_w`` - послойные списки массивов numpy, похожие на ``self.biases`` and ``self.weights``."""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # прямой проход
        activation = x
        activations = [x] # список для послойного хранения активаций
        zs = [] # список для послойного хранения z-векторов
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b
            zs.append(z)
            activation = sigmoid(z)
            activations.append(activation)
        # обратный проход
        delta = self.cost_derivative(activations[-1], y) * 
            sigmoid_prime(zs[-1])
        nabla_b[-1] = delta
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())
        """Переменная l в цикле ниже используется не так, как описано во второй главе книги. l = 1 означает последний слой нейронов, l = 2 – предпоследний, и так далее. Мы пользуемся преимуществом того, что в python можно использовать отрицательные индексы в массивах."""
        for l in xrange(2, self.num_layers):
            z = zs[-l]
            sp = sigmoid_prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla_b[-l] = delta
            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
        return (nabla_b, nabla_w)

...

    def cost_derivative(self, output_activations, y):
        """Вернуть вектор частных производных (чп C_x / чп a) для выходных активаций."""
        return (output_activations-y) 

def sigmoid(z):
    """Сигмоида."""
    return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
    """Производная сигмоиды."""
    return sigmoid(z)*(1-sigmoid(z))

Задача

  • Полностью основанный на матрицах подход к обратному распространению на мини-пакете. Наша реализация стохастического градиентного спуска использует цикл по обучающим примерам из мини-пакета. Алгоритм обратного распространения можно поменять так, чтобы он вычислял градиенты для всех обучающих примерах мини-пакета одновременно. Вместо того, чтобы начинать с одного вектора x, мы можем начать с матрицы X=[x1x2…xm], чьими столбцами будут векторы мини-пакета. Прямое распространение идёт через произведение весовых матриц, добавление подходящей матрицы для смещений и повсеместного применения сигмоиды. Обратное распространение идёт по той же схеме. Напишите псевдокод для такого подхода для алгоритма обратного распространения. Измените network.py так, чтобы он использовал этот матричный подход. Преимуществом такого подхода будет использование всех преимуществ современных библиотек для линейной алгебры. В итоге он может работать быстрее цикла по мини-пакеты (к примеру, на моём компьютере программа ускоряется примерно в 2 раза на задачах классификации MNIST). На практике все серьёзные библиотеки для обратного распространения используют такой полноматричный подход или какой-то его вариант.

В каком смысле обратное распространение является быстрым алгоритмом?

В каком смысле обратное распространение является быстрым алгоритмом? Для ответа на этот вопрос рассмотрим ещё один подход к вычислению градиента. Представьте себе ранние дни исследований нейросетей. Возможно, это 1950-е или 1960-е годы, и вы – первый человек в мире, придумавший использовать для обучения градиентный спуск! Но чтобы это сработало, вам нужно подсчитать градиент функции стоимости. Вы вспоминаете алгебру и решаете посмотреть, можно ли использовать цепное правило для вычисления градиента. Немного поигравшись, вы видите, что алгебра кажется сложной, и вы разочаровываетесь. Вы пытаетесь найти другой подход. Вы решаете считать стоимость функцией только весов C=C(w) (к смещениям вернёмся чуть позже). Вы нумеруете веса w1, w2,… и хотите вычислить ∂C/∂wj для веса wj. Очевидный способ – использовать приближение

$ frac{partial C}{partial w_{j}} approx frac{C(w+epsilon e_j)-C(w)}{epsilon} tag{46} $

Где ε > 0 – небольшое положительное число, а ej — единичный вектор направления j. Иначе говоря, мы можем приблизительно оценить ∂C/∂wj, вычислив стоимость C для двух немного различных значений wj, а потом применить уравнение (46). Та же идея позволит нам подсчитать частные производные ∂C/∂b по смещениям.

Подход выглядит многообещающим. Концептуально простой, легко реализуемый, использует только несколько строк кода. Он выглядит гораздо более многообещающим, чем идея использования цепного правила для подсчёта градиента!

К сожалении, хотя такой подход выглядит многообещающим, при его реализации в коде оказывается, что работает он крайне медленно. Чтобы понять, почему, представьте, что у нас в сети миллион весов. Тогда для каждого веса wj нам нужно вычислить C(w + εej), чтобы подсчитать ∂C/∂wj. А это значит, что для вычисления градиента нам нужно вычислить функцию стоимости миллион раз, что потребует миллион прямых проходов по сети (на каждый обучающий пример). А ещё нам надо подсчитать C(w), так что получается миллион и один проход по сети.

Хитрость обратного распространения в том, что она позволяет нам одновременно вычислять все частные производные ∂C/∂wj, используя только один прямой проход по сети, за которым следует один обратный проход. Грубо говоря, вычислительная стоимость обратного прохода примерно такая же, как у прямого.

Поэтому общая стоимость обратного распространения примерно такая же, как у двух прямых проходов по сети. Сравните это с миллионом и одним прямым проходом, необходимым для реализации метода (46)! Так что, хотя обратное распространение внешне выглядит более сложным подходом, в реальности он куда как более быстрый.

Впервые это ускорение сполна оценили в 1986, и это резко расширило диапазон задач, решаемых с помощью нейросетей. В свою очередь, это привело к увеличению количества людей, использующих нейросети. Конечно, обратное распространение – не панацея. Даже в конце 1980-х люди уже натолкнулись на её ограничения, особенно при попытках использовать обратное распространение для обучения глубоких нейросетей, то есть сетей со множеством скрытых слоёв. Позже мы увидим, как современные компьютеры и новые хитрые идеи позволяют использовать обратное распространение для обучения таких глубоких нейросетей.

Обратное распространение: в общем и целом

Как я уже объяснил, обратное распространение являет нам две загадки. Первая, что на самом деле делает алгоритм? Мы выработали схему обратного распространения ошибки от выходных данных. Можно ли углубиться дальше, получить более интуитивное представление о происходящем во время всех этих перемножений векторов и матриц? Вторая загадка – как вообще кто-то мог обнаружить обратное распространение? Одно дело, следовать шагам алгоритма или доказательству его работы. Но это не значит, что вы так хорошо поняли задачу, что могли изобрести этот алгоритм. Есть ли разумная цепочка рассуждений, способная привести нас к открытию алгоритма обратного распространения? В этом разделе я освещу обе загадки.

Чтобы улучшить понимание работы алгоритма, представим, что мы провели небольшое изменение Δwljk некоего веса wljk:

Это изменение веса приведёт к изменению выходной активации соответствующего нейрона:

Это приведёт к изменению всех активаций следующего слоя:

Эти изменения приведут к изменениям следующего слоя, и так далее, вплоть до последнего, а потом к изменениям функции стоимости:

Изменение ΔC связано с изменением Δwljk уравнением

$ Delta C approx frac{partial C}{partial w^l_{jk}} Delta w^l_{jk} tag{47} $

Из этого следует, что вероятным подходом к вычислению ∂C/∂wljk будет тщательное отслеживание распространения небольшого изменения wljk, приводящего к небольшому изменению в C. Если мы сможем это сделать, тщательно выражая по пути всё в величинах, которые легко вычислить, то мы сможем вычислить и ∂C/∂wljk.

Давайте попробуем. Изменение Δwljk вызывает небольшое изменение Δalj в активации нейрона j в слое l. Это изменение задаётся

$ Delta a^l_j approx frac{partial a^l_j}{partial w^l_{jk}} Delta w^l_{jk} tag{48} $

Изменение активации Δalj приводит к изменениям во всех активациях следующего слоя, (l+1). Мы сконцентрируемся только на одной из этих изменённых активаций, допустим, al+1q,

Это приведёт к следующим изменениям:

$ Delta a^{l+1}_q approx frac{partial a^{l+1}_q}{partial a^l_j} Delta a^l_j tag{49} $

Подставляя уравнение (48), получаем:

$ Delta a^{l+1}_q approx frac{partial a^{l+1}_q}{partial a^l_j} frac{partial a^l_j}{partial w^l_{jk}} Delta w^l_{jk} tag{50} $

Конечно, изменение Δal+1q изменит и активации в следующем слое. Мы даже можем представить путь по всей сети от wljk до C, где каждое изменение активации приводит к изменению следующей активации, и, наконец, к изменению стоимости на выходе. Если путь проходит через активации alj, al+1q,…,aL−1n, aLm, тогда итоговое выражение будет

$ Delta C approx frac{partial C}{partial a^L_m} frac{partial a^L_m}{partial a^{L-1}_n} frac{partial a^{L-1}_n}{partial a^{L-2}_p} ldots frac{partial a^{l+1}_q}{partial a^l_j} frac{partial a^l_j}{partial w^l_{jk}} Delta w^l_{jk} tag{51} $

То есть, мы выбираем член вида ∂a/∂a для каждого следуюшего проходимого нами нейрона, а также для члена ∂C / ∂aLm в конце. Это представление изменений в C из-за изменений в активациях по данному конкретному пути сквозь сеть. Конечно, существует много путей, по которым изменение в wljk может пройти и повлиять на стоимость, а мы рассматривали только один из них. Чтобы подсчитать общее изменение C разумно предположить, что мы должны просуммировать все возможные пути от веса до конечной стоимости:

$ Delta C approx sum_{mnpldots q} frac{partial C}{partial a^L_m} frac{partial a^L_m}{partial a^{L-1}_n} frac{partial a^{L-1}_n}{partial a^{L-2}_p} ldots frac{partial a^{l+1}_q}{partial a^l_j} frac{partial a^l_j}{partial w^l_{jk}} Delta w^l_{jk} tag{52} $

где мы просуммировали все возможные выборы для промежуточных нейронов по пути. Сравнивая это с (47), мы видим, что:

$ frac{partial C}{partial w^l_{jk}} = sum_{mnpldots q} frac{partial C}{partial a^L_m} frac{partial a^L_m}{partial a^{L-1}_n} frac{partial a^{L-1}_n}{partial a^{L-2}_p} ldots frac{partial a^{l+1}_q}{partial a^l_j} frac{partial a^l_j}{partial w^l_{jk}}. tag{53} $

Уравнение (53) выглядит сложно. Однако у него есть приятная интуитивная интерпретация. Мы подсчитываем изменение C по отношению к весам сети. Оно говорит нам, что каждое ребро между двумя нейронами сети связано с фактором отношения, являющимся только лишь частной производной активации одного нейрона по отношению к активации другого нейрона. У ребра от первого веса до первого нейрона фактор отношения равен ∂alj / ∂wljk. Коэффициент отношения для пути – это просто произведение коэффициентов по всему пути. А общий коэффициент изменения ∂C / ∂wljk является суммой коэффициентов по всем путям от начального веса до конечной стоимости. Эта процедура показана далее, для одного пути:

Пока что мы давали эвристический аргумент, способ представить происходящее при изменении весов сети. Позвольте мне обрисовать дальнейший вариант мышления на эту тему для развития данного аргумента. Во-первых, можно вывести точные выражение для всех отдельных частных производных в уравнении (53). Это легко сделать с использованием несложной алгебры. После этого можно попробовать понять, как записать все суммы по индексам в виде произведений матриц. Это оказывается утомительной задачей, требующей терпения, но не чем-то экстраординарным. После всего этого и максимального упрощения вы увидите, что получился ровно тот же самый алгоритм обратного распространения! Поэтому алгоритм обратного распространения можно представлять себе, как способ вычисления суммы коэффициентов по всем путям. Или, если переформулировать, алгоритм обратного распространения – хитроумный способ отслеживания небольших изменений весов (и смещений), когда они распространяются по сети, достигают выхода и влияют на стоимость.

Здесь я не буду делать всего этого. Это дело малопривлекательное, требующее тщательной проработки деталей. Если вы готовы к такому, вам может понравиться этим заниматься. Если нет, то надеюсь, что подобные размышления дадут вам некоторые идеи по поводу целей обратного распространения.

Что насчёт другой загадки – как вообще можно было открыть обратное распространение? На самом деле, если вы последуете по обрисованному мною пути, вы получите доказательство обратного распространения. К несчастью, доказательство будет длиннее и сложнее чем то, что я описал ранее. Так как же было открыто то короткое (но ещё более загадочное) доказательство? Если записать все детали длинного доказательства, вам сразу бросятся в глаза несколько очевидных упрощений. Вы применяете упрощения, получаете более простое доказательство, записываете его. А затем вам опять на глаза попадаются несколько очевидных упрощений. И вы повторяете процесс. После нескольких повторений получится то доказательство, что мы видели ранее – короткое, но немного непонятное, поскольку из него удалены все путеводные вехи! Я, конечно, предлагаю вам поверить мне на слово, однако никакой загадки происхождения приведённого доказательства на самом деле нет. Просто много тяжёлой работы по упрощению доказательства, описанного мною в этом разделе.

Однако в этом процессе есть один хитроумный трюк. В уравнении (53) промежуточные переменные – это активации, типа al+1q. Хитрость в том, чтобы перейти к использованию взвешенных входов, типа zl+1q, в качестве промежуточных переменных. Если не пользоваться этим, и продолжать использовать активации, полученное доказательство будет немногим более сложным, чем данное ранее в этой главе.

Возможно, вам также будет интересно:

  • Модем ошибка 720 не удается подключиться к удаленному компьютеру
  • Модем ошибка 651 что значит
  • Модем ошибка 651 что делать как исправить
  • Модем ошибка 651 windows 7 при подключении к интернету
  • Модем ошибка 619 мтс модем

  • Понравилась статья? Поделить с друзьями:
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии