Математика — наука непростая, и учащиеся часто допускают ошибки при ее изучении.
В статье мы проведем анализ типичных ошибок при изучении математики и дадим советы, как их избежать.
Кстати, мы уже писали о самых распространенных ошибках в ЕГЭ по математике. Подписывайтесь на наш Telegram-канал, чтобы не пропустить новые публикации. Еще там вы найдете интересные предложения для вашей учебы.
Нужна помощь?
Доверь свою работу кандидату наук!
Какие бывают ошибки в математике
Ошибки в математике допускают все: и учащиеся, и даже сами преподаватели. Однако, эти ошибки носят разный характер.
Есть два вида ошибок:
- типичные (устойчивые);
- случайные.
Типичные ошибки — это системные ошибки, которые появляются у многих учащихся одновременно. К таким ошибкам можно отнести неправильно понятые формулы или условия их применения, правила решения уравнений и т.д. Например, если на контрольной половина класса допустила одинаковую ошибку, значит эта ошибка типичная. В этом случае преподаватель понимает, что ученики неправильно поняли материал. Такие ошибки опасны — если преподаватель вовремя не заметит, а ученики запомнят неправильный вариант, то будут допускать в этом месте ошибку и приходить к неверному результату.
Случайные ошибки — это ошибки, которые появляются однократно, у одного-двух учащихся. Случайных ошибок в работе может быть много и, как правило, их допускают из-за невнимательности или спешки. К таким ошибкам можно отнести просчеты в вычислениях, упущения в формулах и т.д.
Типичные ошибки в математике
Чтобы одолеть математику, нужно много времени. Неудивительно, что при ее изучении и школьники, и студенты часто допускают ошибки.
Мы не будем разбирать конкретные ошибки в вычислениях, ведь для каждого уровня математики они свои. Мы разберемся в характерных общих ошибках при изучении этого предмета.
Допускать пробелы в знаниях
С каждым классом математика становится сложнее. Но есть базовые знания, без которых не обойтись. И, если неправильно понять какой-то материал, скорее всего это отрицательно скажется на учебе в целом: если один раз неправильно выучите, потом будете делать ошибку везде, где сталкиваетесь с этим материалом. Такая недопонятая информация, как снежный ком, будет нарастать все больше и мешать продвигаться дальше.
Зазубривать теорию
В математике важно знать формулы и теоремы. Но просто зазубрить теоретическую информацию недостаточно, надо уметь применять ее на практике. К тому же, если просто заучить материал и не понимать, что заучили, вы быстро забудете зазубренное. Так что всю теорию в математике обязательно надо закреплять на практике.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы.
Перескакивать от простого к сложному
Очень часто учащиеся, после того как почувствуют силы и уверенность в математике, начинают хвататься за более сложный уровень, пропуская, на их взгляд, легкую информацию. В математике такой подход не работает, ведь чтобы был результат, этот предмет надо изучать систематично, не опуская даже на первый взгляд простые и очевидные вещи.
Списывать домашнее задание
Все знают, что списывать не совсем хорошо. Однако, одно дело, когда ученик списал домашнее задание из решебника из-за нехватки времени, и совсем другое, если он списал из-за незнания или непонимания материала. В математике в непонятных темах надо разбираться сразу, потому что, как мы писали выше, с каждым годом все сложнее будет наверстать упущенное.
Заниматься нерегулярно
Для математики нужна постоянная практика. Если вы всерьез хотите изучать математику, или этот предмет вам важен при поступлении, то изучайте его регулярно. Наш мозг устроен так, что информация, которая не совсем понятна или малоизученна, быстро забывается. Лучше, чтобы в изучении математики была систематичность. Это касается не только самостоятельного изучения, но и занятий с репетиторами.
Делать упор только на алгебру или геометрию
В математике нет менее или более важных дисциплин, большинство информации в ней тесно переплетается. Например, без алгебраических знаний нельзя понять некоторые геометрические задачи и наоборот.
Посмотри примеры работ и убедись, что мы поможем на совесть!
Теперь вы знаете главные ошибки при изучении математики. Старайтесь их избегать, и у вас все обязательно получится. А если появятся вопросы и трудности, обращайтесь в студенческий сервис. Наши специалисты помогут в решении любых учебных задач.
Ошибки учащихся при изучении математики,
их предупреждение и объяснение
Автор работы:
Дука Наталья Ивановна
учитель математики МОУ «СОШ №4 г. Ртищево Саратовской обл.» ____________________________
Аннотация
В данной работе рассматриваются типичные ошибки, которые допускают учащиеся при выполнении математических заданий. Здесь разобраны причины, способы исправления и предупреждения ошибок, разобраны конкретные ошибки из курса алгебры и начал анализа и способы их объяснения и устранения, указаны ошибки в работах государственной итоговой аттестации учащихся 9 и 11 классов. Рассмотрены ошибки по математике в учебниках и методической литературе. Материал, представленный в работе, может заинтересовать учителей математики.
Тезисы
В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная.
Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.
Объект исследования: процесс обучения математике в основной общеобразовательной школе.
Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.
Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.
Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления.
Необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.
Самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления.
Пример неосознанного применения алгоритма: получив уравнение sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x.
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок.
Некоторые учащиеся считают, что arcsin(sink)= k при любом k и дают такой ответ: arcsin(sin) =
. Это очень грубая ошибка. Аналогичное задание «вычислить arctg(tg130о)» вызывает у учащихся неверный ответ 130о.
Иногда ученики используют неверную формулу, не задумываясь над ней.
Например, определяя, является ли число рациональным, ученик пишет:
=
и получает неверный ответ,
При работе с «многоэтажными дробями» ученики делают много ошибок. Например: . Должна появиться верная запись
.
При выполнении преобразований со степенями учащиеся не только допускают ошибки, но просто забывают формулы, например формулу
an am = an+m.
Пример ошибки на свойство степени: . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Необходимо в результате записать формулу
.
Встречаются ошибки от непонимания. Большинство учащихся, решая впервые неравенство х24, приводят неверное решение х
2.
Выполняя тригонометрические задания, ученик часто «изобретает формулы», например: «sin 2 х = 2 sin x».
Систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого подходят задания типа «найди ошибку в решении». Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся.
Учебный год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний.
В учебнике Л. С. Атанасяна и других «Геометрия 7-9» была приведена некорректно составленная задача № 536: «Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠ВDС = ∠С». Треугольник, описанный в условии задачи, не существует.
Объяснение деления с остатком круглых чисел в теме «Деление круглых чисел» ( урок 66) учебника математики для 4 –ого класса (Т. Е. Демидова, С. А. Козлова, А. П. Тонких) дается с ошибкой.
В газете «Математика» предлагается уравнение и к нему ответ:1. Приведенное решение неверное, так как приводит к потере корней.
Вступление
Вспоминается расхожая истина – умные люди учатся на чужих ошибках. В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная. Нужно лишь правильно относиться к ошибке, правильно ее использовать.
Обидно получать плохие оценки из-за ошибок «на ровном месте». Глупые ошибки – проблема многих учеников: случайная потеря знака, скобки, необоснованное изменение чисел, пропуски переменных и всевозможные ляпы. Сами ученики не могут объяснить, чем вызваны эти ошибки.
Причины ошибок, допускаемых учащимися при изучении математики
Проблема исследования состоит в теоретическом обосновании и разработке такой методики обучения математике, которая создавала бы условия для развития рефлексивной деятельности учащихся, способствующей предупреждению типичных ошибок.
Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.
Объект исследования: процесс обучения математике в основной общеобразовательной школе.
Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.
Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.
Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления. Снижает, но не исключает. Можно ли избавиться от таких ошибок? Ученик знает, что нужно решать внимательно, но ничего не может с собой поделать.
Известно, что осознание правила или определяет действия, или, по крайней мере, их контролирует. Знание правила необходимо и для того, чтобы осуществить проверку решения и дать его обоснование. Но большинство учащихся воспринимают курс алгебры как набор несвязанных между собой правил, которые заучиваются (иногда формально) для применения их к решению задач. Поэтому необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.
Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.
Выполняя математические задания, учащиеся допускают типичные ошибки:
- Незнание правил, определений, формул.
- Непонимание правил, определений, формул.
- Неумение применять правила, определения, формулы.
- Неверное применение формул.
- Невнимательное чтение условия и вопроса задания.
- Вычислительные ошибки.
- Не использование свойств фигур при решении геометрических задач.
- Логические ошибки при решении текстовых задач.
- Раскрытие скобок и применение формул сокращенного умножения.
Какие причины ошибок по математике?
- Пропуски занятий приводят к незнанию материала, пробелам в знаниях.
- Поверхностное, невдумчивое восприятие нового материала приводят к непониманию его.
- Недостаточная мозговая деятельность приводит к неумению применять правила, определения и формулы .
- Неряшливый, неаккуратный почерк ученика приводит к досадным ошибкам. Учащиеся не всегда сами понимают, что именно они написали.
- Усталость. Чрезмерная нагрузка и недостаточный сон приводит к снижению внимания, скорости мышления и, как следствие, к многочисленным ошибкам.
- Кратковременное или полное переключение внимания с одной деятельности на другую (учебную или внеучебную) приводит к утрате только что воспринятого материала, приходится все начинать сначала.
- Скорость работы. Низкая скорость выполнения мыслительных операций часто мешает ученику контролировать себя и это может стать еще одной причиной ошибки. «Зависание» с какой-нибудь одной частью задания удаляет из «оперативной памяти» информацию о другой, в которой допускается не вынужденная ошибка. Скорость работы определяется физиологией конкретного школьника и навыками выполнения тех или иных операций.
- Мотивация. Следствие низкой мотивации – потеря внимания и ошибка.
Работа над ошибками
В приемах работы над ошибками отсутствует диагностика причин ошибок. Не уделяется должного внимания работе по формированию рефлексивной деятельности учащихся и ее использованию в работе по предупреждению и исправлению математических ошибок. При отсутствии должной доли самостоятельности при работе над ошибками, совершаемые учеником действия никак не контролируются, допущенные ошибки не замечаются, причины их появления остаются невыясненными, что приводит к их повторению. Напротив, самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления. При этом у школьников постепенно развиваются стремление и умение разобраться в задаче, планировать ее решение, продумывать возможные варианты действий и прогнозировать их результаты. Например, ученик многократно применяет к преобразованию алгебраических выражений формулы квадрата суммы и разности двух чисел, но получив задание представить в виде многочлена
(–х–5)2, теряется. Следует предложить учащемуся ответить на вопрос что вызывает затруднение? И как преобразовать выражение, чтобы можно было применить одну из формул в том виде, в каком они предложены в учебнике. Другой пример неосознанного применения алгоритма: получив уравнение
sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x. Полезно предложить ученику представить наглядное решение на тригонометрическом круге.
Самоконтроль
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Эти навыки состоят из двух частей: а) умения обнаружить ошибку; б) умения её объяснить и исправить. В процессе обучения применяются несколько приёмов самоконтроля, которые помогают обнаружить допущенные ошибки и своевременно их исправить. К ним относятся:
- проверка вычисления и тождественного преобразования путём выполнения обратного действия или преобразования;
- проверка правильности решения задач путём составления и решения задач, обратных к данной;
- оценка результата решения задачи с точки зрения здравого смысла;
- проверка аналитического решения графическим способом.
Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата. Установление возможных пределов ожидаемого ответа предупреждает недочёты типа описок, пропуска цифр.
Например, рассмотрим задачу: “За неделю завод выпустил 130 холодильников, выполнив месячный план на 25%. Сколько холодильников должен выпустить завод за месяц по плану”.
Ученик написал = 52, ошибка становится очевидной, если перед решением ученик прикинет в уме: “За неделю завод выпустил 130 холодильников. Следовательно, за месяц он выпустит больше. Значит, ответ должен быть больше, чем 130” .
Объяснение и предупреждение ошибок
Свести ошибки к минимуму способствуют следующие профилактические меры.
- Тексты письменных заданий должны быть удобными для восприятия: грамотно сформулированными, хорошо читаемыми.
- Активная устная отработка основных ЗУН, регулярный разбор типичных ошибок.
- При объяснении нового материала предугадать ошибку и подобрать систему заданий на отработку правильного усвоения понятия. Акцентировать внимание на каждом элементе формулы, выполнение разнотипных заданий позволит свести ошибочность к минимуму.
- Подбирать задания, вызывающие интерес, формирующие устойчивое внимание.
- Прочному усвоению (а значит, отсутствию ошибок) способствуют правила, удобные для запоминания, четкие алгоритмы, следуя которым заведомо придешь к намеченной цели.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок. В математике, как ни в какой другой науке, особенно сильна взаимосвязь материала. Изучение и понимание последующего невозможно без знания предыдущего, отсюда неизбежность повторения на каждом уроке. При объяснении нового материала следует использовать ряд определений и теорем, которые были изучены ранее.
Например, перед изучением темы «Теоремы сложения» следует повторить следующие теоретические вопросы:
1. Четные и нечетные функции.
2. Изменение тригонометрических функций при возрастании и убывании аргумента.
3. Знаки тригонометрических функций.
4. Таблицы значений тригонометрических функций.
А также выполнить задания:
1. Определите четность и нечетность тригонометрической функции:
а) y = – cos x + x2; б) y = sin2 x; в) y = .
2. Найдите область определения функции y = x2 – 6x + 10.
3. При каких значениях x функции y = sin x и y = cos x принимают одинаковые значения?
Перед прохождением темы «Первообразная и интеграл» повторяем все формулы дифференцирования. Затем предлагается самостоятельная работа (на 10–15 мин), на которой ученики получают карточки-задания, в которых «опущены» один–два компонента из формулы дифференцирования и приведены две функции, производные которых необходимо найти. После проверки самостоятельной работы анализируем допущенные ошибки, определяем пробелы в знаниях и проводим работу по их устранению.
Рассмотрим ошибки, допускаемые в курсе алгебры и начал анализа. Задание. Найти точное значение arcsin (sin).
Некоторые учащиеся считают, что arcsin(sink)= k при любом k и дают такой ответ: arcsin(sin) =
. Это очень грубая ошибка. По определению
. Следовательно, число arcsin(sin
) должно принадлежать промежутку
, число
этому промежутку не принадлежит. Имеем: arcsin (sin
) = arcsin (sin
)) = arcsin (sin
) = arcsin
=
Аналогичное задание «вычислить arctg(tg130о)» вызывает у учащихся неверный ответ 130о. Можно исправить ошибку следующим образом: учитывая, что 90о
90о для любого
и arctg (tgх) = х при
х arctg (tg130о) = arctg (tg180о
50о) = arctg (tg(
50о)) =
50о. Существует второй способ решения. Пусть arctg (tg130о) = х, получаем tg х = tg (arctg (tg130о)), откуда tg х = tg 130о. По условию равенства тангенсов имеем х = 130о +
k, где k
Z. Учитывая область определения функции у = arctg х, где х
(
90О; 90О), при k =
1 х = 130о
180о =
50о.
Рассмотрим еще один пример правильного решения аналогичного задания вычислить arcsin(sin2) при неверном ответе учащихся «2». Решение: arcsin (sink) = k, если , arcsin (sin2) = arcsin (sin(
) =
2, т. к.
2
.
Иногда ученики используют неверную формулу, не задумываясь над ней. Например, определяя, является ли число рациональным, ученик пишет:
=
и получает неверный ответ, выполняя преобразование иррационального выражения, учащийся получил
= х+2. Во-первых, учащиеся забывают, что
, во-вторых, опять ошибочная аналогия с формулой
=
, где
Применение «формулы
=
» в классе обязательно происходит независимо от того, повторяются свойства радикалов на уроках или нет. Ученик проводит аналогию с формулой
=
, где
и не понимает, почему он неправ. Если заставить ученика написать правильно по свойству, то долговременного эффекта не получится. Необходимо, чтобы ученик понял и осознал свою ошибку. Для этой цели пригоден совет: вычислите
по тому алгоритму, который только что применили, имеем
=
и по действиям
2 = 1 и определите, какое решение верное. Ученик задумывается и находит ошибку.
Можно предложить учащимся проверить себя, взяв, например, значение х = 2 но
;
при х = –2 но
.
Делаем вывод: преобразование выполнено неверно, формула «=
» не существует и
При работе с «многоэтажными дробями» ученики делают много ошибок. Например: . Нужно посоветовать ученику проверить написанное при конкретных значениях переменных. Так, при a = b = 1, c = 2, получим
, с другой стороны
, тогда 2=
В результате ученик должен сделать вывод, что при работе с «трехэтажными дробями» лучше ставить скобки, чем сравнивать длины дробных «черточек»:
. И, разумеется, должна появиться верная запись
.
При выполнении преобразований со степенями учащиеся не только допускают ошибки, но просто забывают формулы, например формулу
an am = an+m. Полезно учащимся показать, как они могут вспомнить формулу, пользуясь определением степени, например a3a4=aaa
=a 7=a 3+4. Применяя определение степени в подобных ситуациях, учащиеся могут вывести любую формулу действий со степенями. Аналогично можно показать ошибки в действиях со степенями.
Ещё пример ошибки: . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Следует привести конкретный пример с удобным вычислением
=
. Здесь же можно предложить другой способ
Необходимо в результате записать формулу .
Встречаются ошибки от непонимания. Большинство учащихся, решая впервые неравенство х24, приводят неверное решение х
2. Полезно в этом случае предложить учащимся проверить число, например. -3, при этом учащиеся убеждаются в неверности ответа. Можно показать три способа решения этого неравенства. 1 способ тот, которым и пользовались учащиеся «
», но допустили следующую ошибку «
=х». Верное решение
Этот способ решения содержит опасный момент – необходимо обратить внимание на возрастание функции у =
при х
0, иначе в дальнейшем будут еще ошибки при решении неравенств. Второй способ основан на методе интервалов х2
4, х2
,
(х-2)(х+2)0,
. Третий способ графический.
х24 при
.
Выполняя тригонометрические задания, ученик часто «изобретает формулы», например: «sin 2 х = 2 sin x». В этом случае можно поступить двумя способами: подставить х =/6 и получить неверное равенство sin
2sin
,
/2 = 2
1/2 или вспомнить определение sin х на тригонометрическом круге. Наглядно хорошо видно, что sin 2х
2sinх. Обращение к тригонометрическому кругу всегда полезно повторением определения тригонометрических функций и наглядностью определений.
у
Не нужно специально исправлять каждое ошибочное утверждение ученика и предупреждать его об ошибках. Лучше поставить это утверждение на обсуждение всего класса и добиться осознанного исправления ошибки. Практика показывает, что систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого подходят задания типа «найди ошибку в решении»:
Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.
Анализ работ ГИА и ЕГЭ
Анализ работ государственной итоговой аттестации учащихся 11-х классов показал, что типичные ошибки допущены при:
- преобразовании дробно-рациональных выражений, содержащих корень
n-ой степени
- исследовании функций на наибольшее и наименьшее значения;
- решении показательных и логарифмических неравенств (отсутствует ссылка на соответствующие свойства функций);
- вычислении площади криволинейной трапеции;
- построении графика функции с модулем;
- изображении тел вращения в геометрической задаче;
- теоретическом обосновании используемых формул и фактов при решении задачи по стереометрии;
- построении множества точек плоскости, удовлетворяющего заданному условию;
- решении задач с параметром.
Для повышения уровня учебных достижений учащихся на ГИА за курс старшей школы рекомендуется обратить внимание на следующие темы и разделы курса алгебры и начал анализа и геометрии:
- комбинация тел;
- углы в пространстве;
- производная и её применение к исследованию функции на отрезке;
- построение ГМТ, удовлетворяющего заданным условиям;
- логарифмические и показательные неравенства;
- тригонометрические функции и их свойства;
- тождественные преобразования дробно-рациональных выражений, содержащих корень n-ой степени.
Учебный год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний, построение и развитие межпредметных связей и осознание взаимосвязи с ранее выученными темами, на подготовку к итоговому оцениванию знаний, установлению формально-логических подходов к построению курса школьной математики, закрепление необходимости обосновывать и доказывать математические факты.
Ошибки в учебниках и методической литературе
В учебнике Л. С. Атанасяна и других «Геометрия 7-9» была приведена задача № 536: «Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠ВDС = ∠С».
Решение.
ВD – биссектриса АВС
=
∠ВDС = ∠С ВDС равнобедренный
ВD = DС
=
Отсюда СD =
Ответ:
Решим задачу вторым способом.
ВЕ – высота АВС. Пусть DЕ = х. Из прямоугольных треугольников АВЕ и DВЕ получаем:
АВ2 – АЕ2 = ВD2 – DЕ2,
302 – (20 + х)2 = 162 – х2,
900 – 400 – 40х – х2 = 256 – х2,
40х = 244,
х = 6,1.
ВЕ высота и медиана
DЕ = СЕ
СD = 2х = 12,2. Получили несоответствие с ответом первого способа решения.
Проверим, существует ли треугольник, у которого выполнены условия: ∠ВDС = ∠С и ∠АВD = ∠DВС. Найдем величины ∠DВС, ∠ВDС, ∠С.
АD2 = АВ2 + ВD2 – 2
cos ∠AВD
cos ∠AВD =
Тогда ∠АВD 38,5о. ∠DВС = ∠АВD
38,5о.
Аналогично cos ∠ADВ =
Тогда ∠АDВ = 180о – 67,59о ∠ВDС
67,59о. Из
ВDС
∠С = 180о – 38,05о – 67,59о = 74,36о,
Отсюда следует, что ∠ВDС ∠С и треугольник DВС неравнобедренный.
Значит, задача составлена некорректно: треугольник, описанный в условии задачи, не существует.
Возможны два корректных варианта задачи:
- Дан треугольник АВС, точка D лежит на стороне ВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠ВDС = ∠С.
В этом случае ВD не является медианой. По второму способу получаем СD = 12,2.
- Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30. АD = 20, ВD = 16.
∠ВDС ∠С, в этом случае из треугольника DВС по теореме синусов получаем
В действующем учебнике задача № 536 имеет вид:
Отрезок BD является биссектрисой треугольника АВС. а) Найдите АВ, если ВС = 9 см, АD = 7,5 см, DС = 4,5 см. б) Найдите DС, если АВ = 30. АD = 20, ВD = 16.
Посмотрим объяснение деления с остатком круглых чисел в теме «Деление круглых чисел» ( урок 66) учебника математики для 4 –ого класса (Т. Е. Демидова, С. А. Козлова, А. П. Тонких).
Цитируем: «Прочитай, объясни и проверь записи.
190 : 20 = 190 : 10 : 2 = 9 ( 1 остаток)
190 : 20 = 19 д. : 2 д. = 9 ( 1 остаток)
4700 : 500 = 4700 : 100 : 5 = 9 ( 2 остаток)
4700 : 500 = 47 с. : 5 с. = 9 ( 2 остаток)»
Проверяем 20 ∙ 9 + 1 = 190 – равенство неверное, делаем вывод: ошибка при выполнении деления с остатком. В чем ошибка? Анализируем 1-ое равенство 190 : 20 = 190 : 10 : 2 = 19 : 2, получаем деление числа 19 на число 2 и соответственно остаток от деления 19 на 2, но не от деления 190 на 20, действительно 19 : 2 = 9 ( 1 остаток). В этом случае 19 показывает, сколько десятков содержится в числе 190, поэтому остаток так же получаем в десятках, но не в единицах.
Анализируем 2-ое равенство 190 : 20 = 19 д. : 2 д. здесь мы делим десятки, поэтому остаток также будет в десятках 9 о чем сказано ранее), т, е. получаем 19 д. : 2 д. = 9 (1 д. остаток), проверкой убеждаемся в истинности деления 9 ∙ 2 д. + 1 д. = 19 д. = 190.
Предлагаем верные записи:
190 : 20 = 190 : 10 : 2 = 9 ( 1 д. остаток)
190 : 20 = 19 д. : 2 д. = 9 ( 1 д. остаток)
4700 : 500 = 4700 : 100 : 5 = 9 ( 2 с. остаток)
4700 : 500 = 47 с. : 5 с. = 9 ( 2 с. остаток).
В газете «Математика» предлагается уравнение и к нему ответ:1. Предложено решение уравнения по следующей схеме:
af(x)bg(x) = ap
bp
Приведенное решение неверное, так как приводит к потере корней. данное уравнение следует решать по схеме:
a f(x) b g(x) = a p
b p
a f(x)– р
b
q – g(x)
Вернемся к данном уравнению.
= 40
2 3
Заключение
Хотя проблемы формирования и развития рефлексивной деятельности в процессе обучения и поиск новых форм работы над математическими ошибками школьников и не являются абсолютно новыми, изучение такого аспекта, как использование рефлексивной деятельности учащихся при работе над типичными ошибками всегда актуальны. В данной работе рассмотрены некоторые типичные ошибки, допускаемые учащимися при изучении математики, их объяснение, меры их предупреждения. Хорошо организованная учителем работа учащихся над типичными ошибками посредством исследовательского приема приводит к улучшению результата обучению математики и развитию рядя показателей логического мышления. К тому же предмет «математика» настолько сложен, что даже методисты допускают ошибки.
Литература
- Далингер В. А. «Анализ типичных ошибок, допускаемых в курсе алгебры и начала анализа» «Математика в школе» 6-98
- 2-98 Ярский А. С, «Что делать с ошибками»
- Хэкало С. П. «Корни терять нельзя» 5-98
- Игнатенко В. З. «Сюрпризы биссектрисы» 5-98
Интернет-ресурсы
- http://mat.1september.ru/view_article.php?ID=200900304
- http://www.distedu.ru/mirror/_fiz/archive.1september.ru/mat/1998/no38.htm
- http://www.ankolpakov.ru/2011/10/03/repetitor-po-matematike-o-durackix-oshibkax/
- http://www.referun.com/n/preduprezhdenie-tipichnyh-oshibok-uchaschihsya-v-protsesse-obucheniya-algebre-posredstvom-formirovaniya-i-ispolzovaniya-r#ixzz2PJHLl9cJ
- http://www.referun.com/n/preduprezhdenie-tipichnyh-oshibok-uchaschihsya-v-protsesse-obucheniya-algebre-posredstvom-formirovaniya-i-ispolzovaniya-r
Многие школьники и студенты считают, что математика — предмет сложный и практически непостижимый. О том, какие ошибки ребята допускают при изучении этой занимательной науки, рассказываем в этой статье.
Учить только теорию
Математика — наука, которая требует постоянной практики. Однако многие ученики, чтобы разобрать тему, прибегают только к правилам и теоретической части в учебнике. Конечно, можно послушать объяснение учителя на уроке, прочитать несколько теорем, но эти действия не дадут полного понимания предмета.
Чтобы усвоить тему, нужно проработать ее, решая задачи и примеры. Даже если вы идеально знаете все аксиомы геометрии, но при этом ни разу не делали геометрические построения, на контрольной или самостоятельной возникнут большие проблемы с решением заданий.
Списывать домашнее задание
Неважно, кто источник: сосед по парте или сайт с готовыми решениями, — делать домашнее задание всегда лучше самому. Вы можете попросить о помощи в выполнении или подглядеть ответы на сайте, но списывая задачу полностью, вы перестанете улавливать ее суть.
Мозг автоматически переключается на переписывание информации и делает меньший упор на понимание причинно-следственных связей. Как бы ни было сложно, лучше потратить дополнительные полчаса на разбор темы.
Оставлять пробелы в знаниях
С каждым годом изучение предмета становится сложнее, поэтому то, что вы пропустили или не поняли в прошлом году, может аукнуться в следующем. Внимательно следите за тем, насколько вы «в теме» и прорабатывайте трудные моменты сразу, не откладывая на потом.
Делать резкие переходы от простого к сложному
Почувствовав уверенность в своих знаниях и силах, нам зачастую хочется покорять более высокие вершины. Это хорошо, но математика требует последовательного изучения. Когда вы усвоили несколько базовых способов решения уравнений, не стоит сразу переходить к правилам высшей математики. Учебный курс нацелен на то, чтобы постепенно разбирать каждую тему, и пренебрегать этим не стоит.
Избегать изображений
Не только в геометрии, но и в алгебре важны схемы, графики, изображения геометрических фигур. Кому-то действительно просто решать задачу в уме, не прибегая к рисункам, но именно иллюстрации помогают визуализировать последовательность решения заданий.
Вести непонятные конспекты
Часто на уроках приходится писать много и быстро, из-за чего записи становятся неразборчивыми. Когда вы захотите подглядеть какую-то формулу или правило, найти нужные будет достаточно сложно. Обзаведитесь цветными ручками или помечайте важное карандашом.
Другой вариант: для правил, теорем и формул вы можете завести отдельную тетрадь, а решения примеров и задач записывать в основной. Также конспектировать теоретический материал и схемы можно дома, переписывая материал из рабочих записей.
Быть невнимательным
Пожалуй, это главная и самая распространенная ошибка среди людей всех возрастов. Человеческий мозг не может постоянно работать идеально, но все-таки старайтесь максимально концентрироваться на выполнении заданий. Даже если у вас появилось полное понимание алгоритма решения задачи, тщательно проверяйте каждый шаг. Часто неправильный знак или плохо записанная цифра могут привести к ошибочному ответу. Как правило, на контрольных и экзаменах за это снимают баллы.
Заниматься рывками
Отсутствие систематических занятий может привести к путанице в голове и ошибочному понимаю темы. Без постоянной практики алгоритмы решения задач и формулы, когда-то доведенные до автоматизма, начнут постепенно забываться. Если вы занимаетесь по вдохновению каждый день, а затем делаете двухмесячный перерыв, то лучше проработать тему заново и закрепить ее.
Делать упор только на алгебру или геометрию
Если одна дисциплина дается легко, а с другой вы испытываете трудности, то стоит уделить больше времени проблемным местам. Множество тем в математике являются смежными: без знания правил алгебраических решений нельзя понять геометрические, и наоборот. Также на ОГЭ и ЕГЭ важно продемонстрировать понимание обеих дисциплин.
Воспринимать предмет как что-то мучительное
В любой науке можно найти что-то занимательное. Отвлекитесь от учебников, посмотрите лекции о математике и научных открытиях, фильмы, посвященные математическим гениям, прочитайте книги о любопытных фактах из этой науки. Помните, что предмет будет казаться более понятным, если относиться к нему с интересом.
Также об ошибках, которые допускают ученики, смотрите здесь:
Математика требует тщательного изучения. Если у вас что-то не получается, беспокоиться не стоит. Запаситесь терпением, а с учебой всегда поможет ФениксХелп.
Ошибки учащихся при изучении математики,
их предупреждение и объяснение
Автор работы:
Дука Наталья Ивановна
учитель математики МОУ «СОШ №4 г. Ртищево Саратовской обл.» ____________________________
Аннотация
В данной работе рассматриваются типичные ошибки, которые допускают учащиеся при выполнении математических заданий. Здесь разобраны причины, способы исправления и предупреждения ошибок, разобраны конкретные ошибки из курса алгебры и начал анализа и способы их объяснения и устранения, указаны ошибки в работах государственной итоговой аттестации учащихся 9 и 11 классов. Рассмотрены ошибки по математике в учебниках и методической литературе. Материал, представленный в работе, может заинтересовать учителей математики.
Тезисы
В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная.
Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.
Объект исследования: процесс обучения математике в основной общеобразовательной школе.
Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.
Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.
Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления.
Необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.
Самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления.
Пример неосознанного применения алгоритма: получив уравнение sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x.
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок.
Некоторые учащиеся считают, что arcsin(sink)= k при любом k и дают такой ответ: arcsin(sin) =
. Это очень грубая ошибка. Аналогичное задание «вычислить arctg(tg130о)» вызывает у учащихся неверный ответ 130о.
Иногда ученики используют неверную формулу, не задумываясь над ней.
Например, определяя, является ли число рациональным, ученик пишет:
=
и получает неверный ответ,
При работе с «многоэтажными дробями» ученики делают много ошибок. Например: . Должна появиться верная запись
.
При выполнении преобразований со степенями учащиеся не только допускают ошибки, но просто забывают формулы, например формулу
an am = an+m.
Пример ошибки на свойство степени: . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Необходимо в результате записать формулу
.
Встречаются ошибки от непонимания. Большинство учащихся, решая впервые неравенство х24, приводят неверное решение х
2.
Выполняя тригонометрические задания, ученик часто «изобретает формулы», например: «sin 2 х = 2 sin x».
Систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого подходят задания типа «найди ошибку в решении». Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся.
Учебный год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний.
В учебнике Л. С. Атанасяна и других «Геометрия 7-9» была приведена некорректно составленная задача № 536: «Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠ВDС = ∠С». Треугольник, описанный в условии задачи, не существует.
Объяснение деления с остатком круглых чисел в теме «Деление круглых чисел» ( урок 66) учебника математики для 4 –ого класса (Т. Е. Демидова, С. А. Козлова, А. П. Тонких) дается с ошибкой.
В газете «Математика» предлагается уравнение и к нему ответ:1. Приведенное решение неверное, так как приводит к потере корней.
Вступление
Вспоминается расхожая истина – умные люди учатся на чужих ошибках. В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная. Нужно лишь правильно относиться к ошибке, правильно ее использовать.
Обидно получать плохие оценки из-за ошибок «на ровном месте». Глупые ошибки – проблема многих учеников: случайная потеря знака, скобки, необоснованное изменение чисел, пропуски переменных и всевозможные ляпы. Сами ученики не могут объяснить, чем вызваны эти ошибки.
Причины ошибок, допускаемых учащимися при изучении математики
Проблема исследования состоит в теоретическом обосновании и разработке такой методики обучения математике, которая создавала бы условия для развития рефлексивной деятельности учащихся, способствующей предупреждению типичных ошибок.
Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.
Объект исследования: процесс обучения математике в основной общеобразовательной школе.
Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.
Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.
Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления. Снижает, но не исключает. Можно ли избавиться от таких ошибок? Ученик знает, что нужно решать внимательно, но ничего не может с собой поделать.
Известно, что осознание правила или определяет действия, или, по крайней мере, их контролирует. Знание правила необходимо и для того, чтобы осуществить проверку решения и дать его обоснование. Но большинство учащихся воспринимают курс алгебры как набор несвязанных между собой правил, которые заучиваются (иногда формально) для применения их к решению задач. Поэтому необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.
Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.
Выполняя математические задания, учащиеся допускают типичные ошибки:
- Незнание правил, определений, формул.
- Непонимание правил, определений, формул.
- Неумение применять правила, определения, формулы.
- Неверное применение формул.
- Невнимательное чтение условия и вопроса задания.
- Вычислительные ошибки.
- Не использование свойств фигур при решении геометрических задач.
- Логические ошибки при решении текстовых задач.
- Раскрытие скобок и применение формул сокращенного умножения.
Какие причины ошибок по математике?
- Пропуски занятий приводят к незнанию материала, пробелам в знаниях.
- Поверхностное, невдумчивое восприятие нового материала приводят к непониманию его.
- Недостаточная мозговая деятельность приводит к неумению применять правила, определения и формулы .
- Неряшливый, неаккуратный почерк ученика приводит к досадным ошибкам. Учащиеся не всегда сами понимают, что именно они написали.
- Усталость. Чрезмерная нагрузка и недостаточный сон приводит к снижению внимания, скорости мышления и, как следствие, к многочисленным ошибкам.
- Кратковременное или полное переключение внимания с одной деятельности на другую (учебную или внеучебную) приводит к утрате только что воспринятого материала, приходится все начинать сначала.
- Скорость работы. Низкая скорость выполнения мыслительных операций часто мешает ученику контролировать себя и это может стать еще одной причиной ошибки. «Зависание» с какой-нибудь одной частью задания удаляет из «оперативной памяти» информацию о другой, в которой допускается не вынужденная ошибка. Скорость работы определяется физиологией конкретного школьника и навыками выполнения тех или иных операций.
- Мотивация. Следствие низкой мотивации – потеря внимания и ошибка.
Работа над ошибками
В приемах работы над ошибками отсутствует диагностика причин ошибок. Не уделяется должного внимания работе по формированию рефлексивной деятельности учащихся и ее использованию в работе по предупреждению и исправлению математических ошибок. При отсутствии должной доли самостоятельности при работе над ошибками, совершаемые учеником действия никак не контролируются, допущенные ошибки не замечаются, причины их появления остаются невыясненными, что приводит к их повторению. Напротив, самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления. При этом у школьников постепенно развиваются стремление и умение разобраться в задаче, планировать ее решение, продумывать возможные варианты действий и прогнозировать их результаты. Например, ученик многократно применяет к преобразованию алгебраических выражений формулы квадрата суммы и разности двух чисел, но получив задание представить в виде многочлена
(–х–5)2, теряется. Следует предложить учащемуся ответить на вопрос что вызывает затруднение? И как преобразовать выражение, чтобы можно было применить одну из формул в том виде, в каком они предложены в учебнике. Другой пример неосознанного применения алгоритма: получив уравнение
sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x. Полезно предложить ученику представить наглядное решение на тригонометрическом круге.
Самоконтроль
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Эти навыки состоят из двух частей: а) умения обнаружить ошибку; б) умения её объяснить и исправить. В процессе обучения применяются несколько приёмов самоконтроля, которые помогают обнаружить допущенные ошибки и своевременно их исправить. К ним относятся:
- проверка вычисления и тождественного преобразования путём выполнения обратного действия или преобразования;
- проверка правильности решения задач путём составления и решения задач, обратных к данной;
- оценка результата решения задачи с точки зрения здравого смысла;
- проверка аналитического решения графическим способом.
Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата. Установление возможных пределов ожидаемого ответа предупреждает недочёты типа описок, пропуска цифр.
Например, рассмотрим задачу: “За неделю завод выпустил 130 холодильников, выполнив месячный план на 25%. Сколько холодильников должен выпустить завод за месяц по плану”.
Ученик написал = 52, ошибка становится очевидной, если перед решением ученик прикинет в уме: “За неделю завод выпустил 130 холодильников. Следовательно, за месяц он выпустит больше. Значит, ответ должен быть больше, чем 130” .
Объяснение и предупреждение ошибок
Свести ошибки к минимуму способствуют следующие профилактические меры.
- Тексты письменных заданий должны быть удобными для восприятия: грамотно сформулированными, хорошо читаемыми.
- Активная устная отработка основных ЗУН, регулярный разбор типичных ошибок.
- При объяснении нового материала предугадать ошибку и подобрать систему заданий на отработку правильного усвоения понятия. Акцентировать внимание на каждом элементе формулы, выполнение разнотипных заданий позволит свести ошибочность к минимуму.
- Подбирать задания, вызывающие интерес, формирующие устойчивое внимание.
- Прочному усвоению (а значит, отсутствию ошибок) способствуют правила, удобные для запоминания, четкие алгоритмы, следуя которым заведомо придешь к намеченной цели.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок. В математике, как ни в какой другой науке, особенно сильна взаимосвязь материала. Изучение и понимание последующего невозможно без знания предыдущего, отсюда неизбежность повторения на каждом уроке. При объяснении нового материала следует использовать ряд определений и теорем, которые были изучены ранее.
Например, перед изучением темы «Теоремы сложения» следует повторить следующие теоретические вопросы:
1. Четные и нечетные функции.
2. Изменение тригонометрических функций при возрастании и убывании аргумента.
3. Знаки тригонометрических функций.
4. Таблицы значений тригонометрических функций.
А также выполнить задания:
1. Определите четность и нечетность тригонометрической функции:
а) y = – cos x + x2; б) y = sin2 x; в) y = .
2. Найдите область определения функции y = x2 – 6x + 10.
3. При каких значениях x функции y = sin x и y = cos x принимают одинаковые значения?
Перед прохождением темы «Первообразная и интеграл» повторяем все формулы дифференцирования. Затем предлагается самостоятельная работа (на 10–15 мин), на которой ученики получают карточки-задания, в которых «опущены» один–два компонента из формулы дифференцирования и приведены две функции, производные которых необходимо найти. После проверки самостоятельной работы анализируем допущенные ошибки, определяем пробелы в знаниях и проводим работу по их устранению.
Рассмотрим ошибки, допускаемые в курсе алгебры и начал анализа. Задание. Найти точное значение arcsin (sin).
Некоторые учащиеся считают, что arcsin(sink)= k при любом k и дают такой ответ: arcsin(sin) =
. Это очень грубая ошибка. По определению
. Следовательно, число arcsin(sin
) должно принадлежать промежутку
, число
этому промежутку не принадлежит. Имеем: arcsin (sin
) = arcsin (sin
)) = arcsin (sin
) = arcsin
=
Аналогичное задание «вычислить arctg(tg130о)» вызывает у учащихся неверный ответ 130о. Можно исправить ошибку следующим образом: учитывая, что 90о
90о для любого
и arctg (tgх) = х при
х arctg (tg130о) = arctg (tg180о
50о) = arctg (tg(
50о)) =
50о. Существует второй способ решения. Пусть arctg (tg130о) = х, получаем tg х = tg (arctg (tg130о)), откуда tg х = tg 130о. По условию равенства тангенсов имеем х = 130о +
k, где k
Z. Учитывая область определения функции у = arctg х, где х
(
90О; 90О), при k =
1 х = 130о
180о =
50о.
Рассмотрим еще один пример правильного решения аналогичного задания вычислить arcsin(sin2) при неверном ответе учащихся «2». Решение: arcsin (sink) = k, если , arcsin (sin2) = arcsin (sin(
) =
2, т. к.
2
.
Иногда ученики используют неверную формулу, не задумываясь над ней. Например, определяя, является ли число рациональным, ученик пишет:
=
и получает неверный ответ, выполняя преобразование иррационального выражения, учащийся получил
= х+2. Во-первых, учащиеся забывают, что
, во-вторых, опять ошибочная аналогия с формулой
=
, где
Применение «формулы
=
» в классе обязательно происходит независимо от того, повторяются свойства радикалов на уроках или нет. Ученик проводит аналогию с формулой
=
, где
и не понимает, почему он неправ. Если заставить ученика написать правильно по свойству, то долговременного эффекта не получится. Необходимо, чтобы ученик понял и осознал свою ошибку. Для этой цели пригоден совет: вычислите
по тому алгоритму, который только что применили, имеем
=
и по действиям
2 = 1 и определите, какое решение верное. Ученик задумывается и находит ошибку.
Можно предложить учащимся проверить себя, взяв, например, значение х = 2 но
;
при х = –2 но
.
Делаем вывод: преобразование выполнено неверно, формула «=
» не существует и
При работе с «многоэтажными дробями» ученики делают много ошибок. Например: . Нужно посоветовать ученику проверить написанное при конкретных значениях переменных. Так, при a = b = 1, c = 2, получим
, с другой стороны
, тогда 2=
В результате ученик должен сделать вывод, что при работе с «трехэтажными дробями» лучше ставить скобки, чем сравнивать длины дробных «черточек»:
. И, разумеется, должна появиться верная запись
.
При выполнении преобразований со степенями учащиеся не только допускают ошибки, но просто забывают формулы, например формулу
an am = an+m. Полезно учащимся показать, как они могут вспомнить формулу, пользуясь определением степени, например a3a4=aaa
=a 7=a 3+4. Применяя определение степени в подобных ситуациях, учащиеся могут вывести любую формулу действий со степенями. Аналогично можно показать ошибки в действиях со степенями.
Ещё пример ошибки: . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Следует привести конкретный пример с удобным вычислением
=
. Здесь же можно предложить другой способ
Необходимо в результате записать формулу .
Встречаются ошибки от непонимания. Большинство учащихся, решая впервые неравенство х24, приводят неверное решение х
2. Полезно в этом случае предложить учащимся проверить число, например. -3, при этом учащиеся убеждаются в неверности ответа. Можно показать три способа решения этого неравенства. 1 способ тот, которым и пользовались учащиеся «
», но допустили следующую ошибку «
=х». Верное решение
Этот способ решения содержит опасный момент – необходимо обратить внимание на возрастание функции у =
при х
0, иначе в дальнейшем будут еще ошибки при решении неравенств. Второй способ основан на методе интервалов х2
4, х2
,
(х-2)(х+2)0,
. Третий способ графический.
х24 при
.
Выполняя тригонометрические задания, ученик часто «изобретает формулы», например: «sin 2 х = 2 sin x». В этом случае можно поступить двумя способами: подставить х =/6 и получить неверное равенство sin
2sin
,
/2 = 2
1/2 или вспомнить определение sin х на тригонометрическом круге. Наглядно хорошо видно, что sin 2х
2sinх. Обращение к тригонометрическому кругу всегда полезно повторением определения тригонометрических функций и наглядностью определений.
у
Не нужно специально исправлять каждое ошибочное утверждение ученика и предупреждать его об ошибках. Лучше поставить это утверждение на обсуждение всего класса и добиться осознанного исправления ошибки. Практика показывает, что систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого подходят задания типа «найди ошибку в решении»:
Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.
Анализ работ ГИА и ЕГЭ
Анализ работ государственной итоговой аттестации учащихся 11-х классов показал, что типичные ошибки допущены при:
- преобразовании дробно-рациональных выражений, содержащих корень
n-ой степени
- исследовании функций на наибольшее и наименьшее значения;
- решении показательных и логарифмических неравенств (отсутствует ссылка на соответствующие свойства функций);
- вычислении площади криволинейной трапеции;
- построении графика функции с модулем;
- изображении тел вращения в геометрической задаче;
- теоретическом обосновании используемых формул и фактов при решении задачи по стереометрии;
- построении множества точек плоскости, удовлетворяющего заданному условию;
- решении задач с параметром.
Для повышения уровня учебных достижений учащихся на ГИА за курс старшей школы рекомендуется обратить внимание на следующие темы и разделы курса алгебры и начал анализа и геометрии:
- комбинация тел;
- углы в пространстве;
- производная и её применение к исследованию функции на отрезке;
- построение ГМТ, удовлетворяющего заданным условиям;
- логарифмические и показательные неравенства;
- тригонометрические функции и их свойства;
- тождественные преобразования дробно-рациональных выражений, содержащих корень n-ой степени.
Учебный год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний, построение и развитие межпредметных связей и осознание взаимосвязи с ранее выученными темами, на подготовку к итоговому оцениванию знаний, установлению формально-логических подходов к построению курса школьной математики, закрепление необходимости обосновывать и доказывать математические факты.
Ошибки в учебниках и методической литературе
В учебнике Л. С. Атанасяна и других «Геометрия 7-9» была приведена задача № 536: «Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠ВDС = ∠С».
Решение.
ВD – биссектриса АВС
=
∠ВDС = ∠С ВDС равнобедренный
ВD = DС
=
Отсюда СD =
Ответ:
Решим задачу вторым способом.
ВЕ – высота АВС. Пусть DЕ = х. Из прямоугольных треугольников АВЕ и DВЕ получаем:
АВ2 – АЕ2 = ВD2 – DЕ2,
302 – (20 + х)2 = 162 – х2,
900 – 400 – 40х – х2 = 256 – х2,
40х = 244,
х = 6,1.
ВЕ высота и медиана
DЕ = СЕ
СD = 2х = 12,2. Получили несоответствие с ответом первого способа решения.
Проверим, существует ли треугольник, у которого выполнены условия: ∠ВDС = ∠С и ∠АВD = ∠DВС. Найдем величины ∠DВС, ∠ВDС, ∠С.
АD2 = АВ2 + ВD2 – 2
cos ∠AВD
cos ∠AВD =
Тогда ∠АВD 38,5о. ∠DВС = ∠АВD
38,5о.
Аналогично cos ∠ADВ =
Тогда ∠АDВ = 180о – 67,59о ∠ВDС
67,59о. Из
ВDС
∠С = 180о – 38,05о – 67,59о = 74,36о,
Отсюда следует, что ∠ВDС ∠С и треугольник DВС неравнобедренный.
Значит, задача составлена некорректно: треугольник, описанный в условии задачи, не существует.
Возможны два корректных варианта задачи:
- Дан треугольник АВС, точка D лежит на стороне ВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠ВDС = ∠С.
В этом случае ВD не является медианой. По второму способу получаем СD = 12,2.
- Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30. АD = 20, ВD = 16.
∠ВDС ∠С, в этом случае из треугольника DВС по теореме синусов получаем
В действующем учебнике задача № 536 имеет вид:
Отрезок BD является биссектрисой треугольника АВС. а) Найдите АВ, если ВС = 9 см, АD = 7,5 см, DС = 4,5 см. б) Найдите DС, если АВ = 30. АD = 20, ВD = 16.
Посмотрим объяснение деления с остатком круглых чисел в теме «Деление круглых чисел» ( урок 66) учебника математики для 4 –ого класса (Т. Е. Демидова, С. А. Козлова, А. П. Тонких).
Цитируем: «Прочитай, объясни и проверь записи.
190 : 20 = 190 : 10 : 2 = 9 ( 1 остаток)
190 : 20 = 19 д. : 2 д. = 9 ( 1 остаток)
4700 : 500 = 4700 : 100 : 5 = 9 ( 2 остаток)
4700 : 500 = 47 с. : 5 с. = 9 ( 2 остаток)»
Проверяем 20 ∙ 9 + 1 = 190 – равенство неверное, делаем вывод: ошибка при выполнении деления с остатком. В чем ошибка? Анализируем 1-ое равенство 190 : 20 = 190 : 10 : 2 = 19 : 2, получаем деление числа 19 на число 2 и соответственно остаток от деления 19 на 2, но не от деления 190 на 20, действительно 19 : 2 = 9 ( 1 остаток). В этом случае 19 показывает, сколько десятков содержится в числе 190, поэтому остаток так же получаем в десятках, но не в единицах.
Анализируем 2-ое равенство 190 : 20 = 19 д. : 2 д. здесь мы делим десятки, поэтому остаток также будет в десятках 9 о чем сказано ранее), т, е. получаем 19 д. : 2 д. = 9 (1 д. остаток), проверкой убеждаемся в истинности деления 9 ∙ 2 д. + 1 д. = 19 д. = 190.
Предлагаем верные записи:
190 : 20 = 190 : 10 : 2 = 9 ( 1 д. остаток)
190 : 20 = 19 д. : 2 д. = 9 ( 1 д. остаток)
4700 : 500 = 4700 : 100 : 5 = 9 ( 2 с. остаток)
4700 : 500 = 47 с. : 5 с. = 9 ( 2 с. остаток).
В газете «Математика» предлагается уравнение и к нему ответ:1. Предложено решение уравнения по следующей схеме:
af(x)bg(x) = ap
bp
Приведенное решение неверное, так как приводит к потере корней. данное уравнение следует решать по схеме:
a f(x) b g(x) = a p
b p
a f(x)– р
b
q – g(x)
Вернемся к данном уравнению.
= 40
2 3
Заключение
Хотя проблемы формирования и развития рефлексивной деятельности в процессе обучения и поиск новых форм работы над математическими ошибками школьников и не являются абсолютно новыми, изучение такого аспекта, как использование рефлексивной деятельности учащихся при работе над типичными ошибками всегда актуальны. В данной работе рассмотрены некоторые типичные ошибки, допускаемые учащимися при изучении математики, их объяснение, меры их предупреждения. Хорошо организованная учителем работа учащихся над типичными ошибками посредством исследовательского приема приводит к улучшению результата обучению математики и развитию рядя показателей логического мышления. К тому же предмет «математика» настолько сложен, что даже методисты допускают ошибки.
Литература
- Далингер В. А. «Анализ типичных ошибок, допускаемых в курсе алгебры и начала анализа» «Математика в школе» 6-98
- 2-98 Ярский А. С, «Что делать с ошибками»
- Хэкало С. П. «Корни терять нельзя» 5-98
- Игнатенко В. З. «Сюрпризы биссектрисы» 5-98
Интернет-ресурсы
- http://mat.1september.ru/view_article.php?ID=200900304
- http://www.distedu.ru/mirror/_fiz/archive.1september.ru/mat/1998/no38.htm
- http://www.ankolpakov.ru/2011/10/03/repetitor-po-matematike-o-durackix-oshibkax/
- http://www.referun.com/n/preduprezhdenie-tipichnyh-oshibok-uchaschihsya-v-protsesse-obucheniya-algebre-posredstvom-formirovaniya-i-ispolzovaniya-r#ixzz2PJHLl9cJ
- http://www.referun.com/n/preduprezhdenie-tipichnyh-oshibok-uchaschihsya-v-protsesse-obucheniya-algebre-posredstvom-formirovaniya-i-ispolzovaniya-r
- Авторы
- Файлы
- Литература
Далингер В.А.
1
1 Омский государственный педагогический университет
1. Асанов Р.А. Работа над ошибками при обучении математике // Из опыта преподавания математики в школе. – М.: Просвещение, 1978. – С. 23-48.
2. Бескин Н.М. Роль задач в преподавании математики // Математика в школе. – 1992. – № 4-5. – С. 3-4.
3. Высоцкий И.Р., Ященко И.В. Типичные ошибки в преподавании теории вероятностей и статистики // Математика в школе. – 2014. – № 5. – С. 32-43.
4. Далингер В.А. Анализ типичных ошибок, допускаемых в курсе алгебры и начал анализа // Математика в школе. – 1998. – № 6. – С. 13-18.
5. Далингер В.А. Типичные ошибки по математике на вступительных экзаменах и как их не допускать. – Омск: Изд-во Омского ИУУ, 1991. – 129 с.
6. Далингер В.А. Начала математического анализа. Типичные ошибки, их причины и пути предупреждения: учебное пособие. – Омск: Изд-во ООО «Издатель-Полиграфист», 2002. – 158 с.
7. Далингер В.А. Совершенствование процесса обучения математике на основе целенаправленной реализации внутрипредметных связей: монография. – Омск: Изд-во ОИПКРО, 1993 г. – 323 с.
8. Далингер В.А., Тарасова О.А. Причины типичных ошибок, допускаемых учащимися в процессе изучения математики и самоконтроль как средство организации рефлексии по предупреждению ошибок // Научные исследования: информация, анализ, прогноз: монография / под общ. ред. проф. О.И. Кирикова. – Книга 2. – Воронеж: Изд-во ВГПУ, 2004. – С. 216-143.
9. Зеленский А.С., Панфилов И.И. Различные способы решения задач С 5 ЕГЭ: сравнительный анализ, ошибки и недочеты, оценивание // Математика в школе. – 2013. – № 8. – С. 15-23.
10. Зеленский А.С., Панфилов И.И. Задачи с параметром на ЕГЭ – 2014: способы решения, ученические ошибки и недочеты // Математика в школе. – 2014. – № 7. – С. 17-24.
11. Зеленский А.С. Формирование навыков самоконтроля у старшеклассников // Математика в школе. – 2014. – № 9. – С. 26-30.
12. Лында А.С. Самостоятельная работа и самоконтроль учебной деятельности старших школьников. – М.: Изд-во МОПИ, 1972. – 198 с.
13. Матизен В. Найдем ошибку // Квант. – 1980. – № 10. – С. 43-46.
14. Рыжик В.И. Формирование потребностей в самоконтроле при обучение математике // Математика в школе. – 1980. – № 3. – С. 7-11.
15. Самсонов П.И. Анализ ошибок выпускников школ на ЕГЭ по математике в 2014 году: от анализа к предупреждению // Математика в школе. – 2014. – №8. – С. 3-7; Математика в школе. – 2014. – № 9. – С. 3-10.
16. Шашкина М.Б., Якименко М.Ш. Типичные ошибки при решении заданий С 3 на ЕГЭ в 2010-2011 гг. // Математика в школе. – 2011. – № 9. – С. 11-17.
17. Ягунова Е.Б. Ошибки по невнимательности. Работа над ошибками // Компьютерные инструменты в школе. – 2012. – № 1. – С. 9-16.
Ошибки делятся на случайные и систематические, то есть устойчивые. Случайными ошибками следует считать те, которые появляются однократно, не систематически у одного-двух обучающихся. К устойчивым (типичным) ошибкам относятся те, которые появляются у одного и того же обучающегося (или у нескольких) неоднократно, или те, которые появляются хотя и однократно, но у многих обучающихся. Типичные ошибки имеют массовый характер, высокую частоту «встречаемости» в работах обучающихся.
К типичным ошибкам по математике можно, например, отнести: ассоциативный перенос методов решения уравнений на неравенства, неверное применение метода декомпозиции неравенства, потеря решений при выполнении заданий на решение уравнений и неравенств, неверное определение вида геометрической фигуры, тавтология в рассуждениях и т.д.
Особо рассмотрим такой пример типичной ошибки по математике. При решении логарифмических уравнений и неравенств учащиеся используют свойства логарифмов:
;
;
;
;
.
Но анализ практики показывает, что большинство учащихся не знают или не до конца осознают условия применения этих формул.
Если мы читаем формулы слева направо, то обязательно подразумеваем, что все аргументы логарифмов и все основания положительны, основания логарифмов не равны единице.
Но если мы запишем, например, формулу 1 справа налево: , то положительным должно быть произведение
(то есть числа
и
должны быть одного знака). Значит, учащиеся должны иметь в виду формулу:
,
.
Следовательно, мы имеем дело не с одной формулой, а с двумя, причем каждая из них имеет свою область определения, что и важно учитывать при решении.
Эти рассуждения имеют место и для многих других формул.
Приведем еще примеры типичных ошибок учащихся:
на вопрос «Чему равны точные значения и arcsin(sin10)?», учащиеся дают неверный ответ:
, arcsin(sin10)=10, ссылаясь на то, что мы имеем дело со взаимно обратными функциями (верные ответы будут соответственно такими:
;
);
учащиеся ошибочно считают, что при решении иррациональных уравнений надо опасаться возведения обеих частей уравнения в четную степень, − могут появиться посторонние корни, и не стоит опасаться возведения в нечетную степень; если появляются посторонние корни, то они обязательно окажутся в той области, которая, после преобразований исходного уравнения, добавится к его области определения;
учащиеся ошибочно считают, что при решении систем уравнений методом деления одного уравнения системы на другое, не происходит потери решений (хотя это не так; например, при решении этим методом системы
получаем решение , в то время как и пара
также является решением);
учащиеся неверно записывают ответ в случае решения систем тригонометрических уравнений (в записи ответов к двум уравнениям системы используется одна и та же буква);
учащиеся ошибочно считают, что если числа и
являются корнями квадратного уравнения, то они исчерпывают все множество корней этого уравнения (ошибочность этого утверждения демонстрируют решения двух таких задач: 1. Найдите числа
и
такие, что корни уравнения
есть числа
и
(Ответ:
или
) и 2. При каких
и
числа
и
являются корнями уравнения
? (Ответ:
или
или
));
при решении логарифмических уравнений путем перехода к новому основанию, учащиеся, как правило, забывают наложить ограничения на это новое основание, а если и осуществили это действие, то забывают проверить те значения неизвестной, которые входили в прежнюю область ограничения, но оказались выброшенным из области определения нового основания;
при решении дробно-рациональных неравенств (со знаком нестрогого неравенства) учащиеся в ответ забывают записать изолированные решения (те, которые обращают в ноль числитель дроби);
при решении уравнений вида учащиеся всегда пользуются утверждением: «произведение двух сомножителей равно нулю, когда хотя бы один из них равен нулю», хотя есть уравнения, при решении которых следует пользоваться утверждением: «произведение двух сомножителей равно нулю, когда хотя бы один из них равен нулю, а другой при этом имеет смысл».
Большинство ошибок связаны, как правило, с формализмом в знаниях учащихся, которые внешне проявляется следующим образом: отрыв формы от содержания; неумение применять теорию на практике; преобладание памяти над пониманием; господство трафарета, шаблона.
Заметим, что во второй половине XIX века господствовала ошибочная теория «недопущения ошибок» (Н. Кульман, Ф. Флеров), согласно которой акцентирование внимания на ошибке повлечет за собой упрочение ошибки в сознании обучающихся. Лозунгами этой теории были следующие: «Ни одной ошибки для глаз!», «Ни одной ошибки для рук!».
Современная дидактика и частные методики доказывают, что работа над ошибками не просто полезна, но и необходима, причем над типичными ошибками должна проводиться фронтальная работа, а над случайными – индивидуальная. Скорее всего, вначале «На ошибках учат», а затем уже «На ошибках учатся». Любая ошибка должна быть использована для более детального и глубокого проникновения в суть каждого правила, понятия, теоремы и т.д.
В каждой ошибке следует различать содержание и причину ее возникновения. В содержание ошибки входит то, что объективно неверно, неадекватно выполнено в действиях обучающихся.
Причина же появления ошибки – это некоторое обстоятельство (или их совокупность), которое повлекло за собой выполнение неадекватного действия обучающимся.
Содержание ошибки легко установить по внешнему выражению действия обучающихся (сужает или расширяет объем понятия, неправильно произносит или пишет, неверно выполняет какое-то действие и т.д.). Причина же ошибка, как правило, внешне себя не проявляет. Задача учителя определить исходные корни допущенной ошибки, что даст ему возможность верно строить работу по ликвидации и предупреждению различного рода ошибок.
П.И. Самсонов замечает, что, судя по допускаемым учащимися ошибкам на ЕГЭ по математике, можно «с уверенностью говорить о недостаточной методической работе в школе, о недостаточной дидактической гибкости учителя. А ведь за этими недоработками стоит будущее ученика!» [15, с. 3-4].
Высказанной мысли созвучны слова Н.М. Бескина: «Как это ни странно звучит, ошибки в процессе изучения не вредны, а полезны. Они аналогичны симптомам болезни. По этим симптомам врач ставит диагноз. Точно так же ошибки учащихся сигнализируют учителю, чего именно школьник не понимает. Учитель мог этого и не знать, а ошибка дает ему нужную информацию. От учителя требуется умение понять неправильный ход мыслей ученика, который не может объяснить, почему он пришел к такому результату. … Учитель должен не просто поправить ошибку, а выкорчевать ее. Для этого он должен понять неправильный ход мыслей и заблуждений ученика, который сам ученик не может сформулировать» [2, с. 3].
Укажем причины типичных математических ошибок учащихся (да они имеют место и по другим учебным дисциплинам):
• причины, связанные с психологическими факторами (ослабление психических функций у обучающихся: внимания, памяти, мышления);
• причины, обусловленные недостатками учебных программ и учебников;
• причины, обусловленные несовершенством организации учебного процесса;
• причины, обусловленные невладением обучающимися на требуемом уровне синтаксисом и семантикой математического языка.
В наших учебных пособиях [5, 6], монографии [7] и статьях [4, 8] приведены примеры типичных ошибок обучающихся по математике и указаны их причины.
В данной статье укажем какие типичные ошибки учащиеся допустили в ЕГЭ по математике в 2014 году при выполнении заданий раздела С.
При решении задачи С 1 (тригонометрическое уравнение) типичными ошибками были:
• ошибки в применении формул приведения;
• ошибки из-за незнания формул тригонометрии;
• ошибка, допущенные в записи корней тригонометрического уравнения;
• ошибки в преобразовании выражений со степенью;
• выполнение преобразования уравнения, ведущее к потере корней.
При решении задания С 2 (стереометрическая задача на нахождение угла между плоскостью основания треугольной пирамиды и плоскостью, проходящей через три заданные точки) типичными были следующие ошибки:
• неверное определение искомого угла;
• неверное определение вида фигуры;
• использовались необоснованные выводы.
При решении задания С 3 (решение системы неравенств, одно из которых показательной, а другое логарифмическое) были допущены такие типичные ошибки:
• потеря части решения неравенства;
• неверное преобразование неравенств;
• не учитывались условия существования решения неравенств;
• ошибки в записи числового промежутка;
• нет четкого понимания сути понятий «система» и «совокупность»;
• неверное применение метода декомпозиции;
• ошибки в преобразовании показательного и логарифмического неравенств;
• ошибки при выполнении тождественных преобразований степенных и логарифмических выражений.
При выполнении задания С 4 (планиметрическая задача с элементами доказательства) были допущены такие типичные ошибки:
• неверное определение центра описанной окружности;
• ошибки в формулировании утверждения;
• неверное определение вида четырехугольника;
• из рассмотрения частных случаев делается общее заключение.
• При выполнении задания С 5 (логарифмическое уравнение с параметром) типичными ошибками были:
• неверно формулируется условие после замены переменной;
• ошибки в нахождении корней квадратного уравнения;
• не учтен возможный случай равенства корней , что привело к потере условия
;
• использованы неравносильные преобразования при переходе от одного уравнения к другому;
• неверно решены рациональные неравенства;
• неполное исследование свойств новой переменной.
При решения задания С 6 (задача целочисленной арифметики) учащиеся допустили следующие типичные ошибки:
• сужен круг поиска необходимых значений;
• ошибка в формулировании свойства чисел;
• проводится неверное обобщение.
Следует заметить, что при выполнении всех шести задач раздела С были допущены речевые ошибки. Например, «угол между плоскостями есть угол между двумя перпендикулярами, проведенными к линии их пересечения», «наложим ОДЗ», «разобьем неравенство на интервалы», «число − число нечетное», «число
− число четное», «меньше
чисел нет, поэтому
быть не может» и др.
Практика показывает, что очень важно воспитывать и развивать у школьников навыки самоконтроля для того, чтобы каждый из них мог бы проводить диагностику своего решения задач.
Стихийно, сам по себе самоконтроль у ученика не рождается. Самоконтролю следует обучать специально.
Анализ причин типичных ошибок по математике показывает, что это как раз и есть ошибки, связанные с недостаточным или полным отсутствием самоконтроля.
Для проведения учащимися самоконтроля правильности проведенного решения задачи им можно дать на вооружение весьма простые средства, которые позволят установить неправильность решения задачи. Примеры таких средств читатель найдет в работах [11, 12, 13, 14].
Библиографическая ссылка
Далингер В.А. ТИПИЧНЫЕ ОШИБКИ УЧАЩИХСЯ ПО МАТЕМАТИКЕ И ИХ ПРИЧИНЫ // Современные наукоемкие технологии. – 2014. – № 12-1.
– С. 94-97;
URL: https://top-technologies.ru/ru/article/view?id=34851 (дата обращения: 30.01.2023).
Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)
ВЫСТУПЛЕНИЕ
на РМО математиков
«Диагностика типичных ошибок
при решении задач»
Учитель математики
МБОУ «Ливенская СОШ №1»
Чебакова Галина Владимировна
Одним из вопросов методики преподавания математики является вопрос формирования у учащихся умений и навыков решения текстовых задач.
Задачи являются материалом для ознакомления учащихся с новыми понятиями, для развития логического мышления, формирования межпредметных связей. Задачи позволяют применять знания, полученные при изучении математики, при решении вопросов, которые возникают в жизни человека. Этапы решения задач являются формами развития мыслительной деятельности.
«На ошибках учатся», — гласит народная мудрость. Но для того, чтобы извлечь урок из негативного опыта, в первую очередь, необходимо увидеть ошибку. К сожалению, школьник зачастую не способен ее обнаружить при решении той или иной задачи.
Целенаправленная работа над ошибками требует их систематизации. При этом главную роль должны сыграть группы ошибок, которые объединены общими причинами их появления, общей методикой работы над ними. Такая систематизация ошибок позволяет наметить пути их исправления и предупреждения этих ошибок в дальнейшем.
Широко известны серьезные трудности, которые испытывают учащиеся при решении задач.
1. Ошибки и недочёты, которые обусловлены невниманием к формированию теоретико-множественных представлений учащихся:
-
ошибки, связанные с недостаточно чётким владением понятиями множества, элемента множества, отношения принадлежности, равенства множеств;
-
ошибки, которые возникают в результате недостаточно чёткого владения операциями пересечения и объединения множеств.
2. Ошибки, которые связаны с недостаточной логической подготовкой учащихся:
-
ошибки, связанные с непониманием структуры теоремы;
-
ошибки, которые обусловлены непониманием зависимости между прямой и обратной теоремами;
-
ошибки, связанные с непониманием метода доказательства от противного.
3. Ошибки, которые допускают учащиеся из-за отсутствия и неустойчивости самоконтроля.
-
Первая трудность состоит в математизации предложенного текста, т.е. в составлении математической модели, которая может представлять собой уравнение, неравенство или их систему, диаграмму, график, таблицу, функцию и т.д.
-
Для того, чтобы перевести содержание задачи на математический язык, учащемуся необходимо тщательно изучить и правильно истолковать его, формализовать вопрос задачи, выразив искомые величины через известные величины и введенные переменные.
-
Вторая трудность — составление уравнений и неравенств, связывающих данные величины и переменные, которые вводит учащийся.
-
Третья трудность — это решение полученной системы уравнений или неравенств желательно наиболее рациональным способом.
Проанализируем некоторые типичные ошибки учащихся, допускаемых при решении тренировочных заданий для подготовки к ГИА
-
Зачастую при решении задач на движение учащиеся не обращают внимание на то, что скорость дана в одних единицах измерения, а время или расстояние в других, поэтому логически рассуждение строится верно, но в результате задача не решена. Что очень важно при ГИА, ЕГЭ – 1 части.
-
При сопоставлении текста задачи и уравнения для её решения уч-ся обозначают за х не ту величину, которая предложена им в задании.
(Скорость первого велосипедиста на 3 км/ч больше скорости второго, поэтому на путь длинной 20 км ему потребовалось на 20 мин. Меньше, чем второму. Чему равны скорости велосипедистов? Пусть х км/ч скорость первого велосипедиста.)
Типичные ошибки:
20: (х+3)-20:х=20
-
При решении задач на проценты ( подорожание , скидки) учащиеся повторное изменение величины находят, не применяя правила нахождения части от предыдущей цены, путём сложения и вычитания процентов.
(Магазин закупил на складе футболки и стал продавать их по цене, приносящей доход в 40 % . В конце года цена была снижена на 50 %. Какая цена меньше: та, по которой магазин закупил футболки, или цена в конце года – и на сколько процентов .
Типичные ошибки: 100+40-50=90% Разница на 10 %.))
Рассмотренные ошибки и недочёты типичны на всех ступенях обучения.
Рассмотренные ошибки свидетельствуют о том, что ученики, не справившиеся с решением задач, не смогли представить себе жизненной ситуации, отраженной в задаче, не уяснили отношений между величинами в ней, зависимости между данными и искомым, а поэтому просто механически манипулировали числами.
Почему учащиеся допустили много ошибок при повторном решении знакомых задач? Анализ результатов позволяет сделать вывод о том, что одна из основных причин допускаемых детьми ошибок в решении текстовых задач – неправильная организация первичного восприятия учащимися условия задачи и ее анализа, которые проводятся без должной опоры на жизненную ситуацию, отраженную в задаче, без ее предметного или графического моделирования. Как правило, в процессе анализа используются лишь различные виды краткой записи условия или готовые схемы, а создание модели на глазах у детей или самими детьми в процессе разбора задачи применяется крайне редко. К тому же при фронтальном анализе и решении задачи учитель нередко ограничивается правильными ответами двух-трех учеников, а остальные записывают за ними готовые решения без глубокого их понимания, т.е. не проводятся все этапы работы над задачей.
Для устранения этих недостатков необходимо прежде всего улучшить методику организации первичного восприятия и анализа задачи, чтобы обеспечить осознанный и доказательный выбор арифметического действия всеми учащимися.
Типичные методические ошибки учителя при работе с текстовыми задачами
Ошибка 1. Пропуск этапа анализа условия задачи.
«Прочитайте условие задачи. Кто пойдет к доске?» – такое часто можно видеть на уроке. И сразу начинается оформление решения. Этап анализа отсутствует и в некоторых учебниках, и в решебниках. Может быть, проведение этого этапа обязательно не для всех учащихся. В классе найдутся такие ученики, у которых этап анализа свернут. Они его проходят очень быстро, поэтому сразу видят решение и переходят к его оформлению. Задача педагога – помогать тем, у которых не получается. Решение задачи основывается на тех связях, которые существуют между данными и искомыми величинами. На выделение этих связей и направлен анализ условия задачи. Чтобы помочь учащимся самостоятельно осуществлять анализ условия, преподаватель может предложить им специальные памятки.
Ошибка 2. Пропуск этапа поиска решения.
Пропуск этого этапа ведет к недопониманию учащимися сущности эвристической деятельности, и как результат, к возникновению трудностей при самостоятельном решении задач. В практике обучения традиционной является ситуация, когда учитель вызывает к доске учащегося, который знает, как решить задачу. Однако при личностно ориентированном обучении основная забота учителя должна быть связана с теми, кто испытывает затруднения при самостоятельном решении задач.
Тем же учащимся, которые без учителя могут решать задачи, необходимо подбирать задания, усиливающие их умения и способствующие их развитию (составить задачи на основе справочных данных; рассмотреть другие способы решения предложенной задачи; составить граф-схемы других уравнений по задаче и др.)
Ошибка 3. Пропуск этапа исследования решения.
Зачем нужен этот этап? На этапе исследования выясняем, соответствует ли полученный ответ условию задачи (правдоподобность результата); есть ли другие способы решения; что полезного можно извлечь на будущее из решенной задачи. Последний вопрос позволяет рассматривать каждую задачу как звено в общем умении решать задачи, что ведет к накоплению опыта по решению задач.
Ошибка 4. Смешение этапов анализа и поиска решения.
Чтобы этого избежать, надо точно знать, какую цель мы преследуем на каждом этапе. Цель этапа анализа условия – выявить все имеющиеся связи между данными и искомыми величинами, чему помогает составление таблицы (схемы, рисунка). Цель этапа поиска решения – выбрать метод решения (алгебраический или арифметический) и составить план решения. Цели этапов разные, значит, и смешивать эти этапы никак нельзя.
-
Если для решения задачи выбран алгебраический метод, то поиск ведем по следующим этапам:
определяем условия, которые могут быть основанием для составления уравнения, и выбираем одно из них;
составляем схему уравнения, соответствующего выбранному условию;
определяем, какие величины можно обозначить за х; выбираем одну из них;
определяем, какие величины нужно выразить через х, и находим условия, которые позволяют это сделать.
Завершается этап поиска составлением плана решения задачи.
Ошибка 5. На этапе анализа условия фиксируются не все связи между величинами.
Надо стараться зафиксировать как можно больше таких связей. Почему это важно? Упустив какую-нибудь связь, мы можем потерять:
условие для составления уравнения;
возможность одну величину выразить через другие;
предусмотреть несколько способов решения.
Ошибка 6. Поиск решения задачи алгебраическим методом начинается с выбора переменной.
Обратим внимание на то, что при перечислении этапов, которые мы проходим при поиске решения задачи алгебраическим методом, сначала был назван выбор условия для составления уравнения, затем составление схемы уравнения, и только тогда мы вводим переменную. На практике мы почти везде видим иное: сначала вводят переменную, затем выражают остальные величины через нее и затем составляют уравнение. Вот этот момент настолько «закостенел» в нашем сознании, что от него отказаться очень трудно.
На самом деле, лучше делать «по-новому». Представьте себя на месте ученика в классе. Рассмотрим ситуацию, когда не были проведены этапы анализа и поиска решения, к доске вызван ученик, который знает, как решить задачу, и он начинает: «За х обозначим…» И что же наш ученик, который затрудняется в самостоятельном решении? Мы из решения сделали тайну непостижимую. «Как он угадал, что обозначить за х?» И когда он будет пробовать дома решать задачу, у него сразу закрадывается сомнение: «А вдруг я не угадаю?»
И насколько спокойнее и увереннее чувствует себя наш ученик, если у него есть карточка по проведению анализа и поиска решения задач; он смог составить по условию задачи таблицу; найти несколько условий для составления уравнений; записать схему уравнения для выбранного условия. Ученик знает, что за х можно обозначить любую из неизвестных величин, и, если не получится уравнение по одной схеме, то можно попробовать составить его по другой схеме.
Ошибка 7. Постановка частных, подсказывающих вопросов учащимся.
Очень много зависит от умения ставить (задавать) вопросы учащимся. Вопросы не должны нести в себе подсказку, а подталкивать учащихся к размышлению. Вместо вопросов: «Во сколько туров проходила олимпиада?», «Как распределились посевные площади?», «Какое время находились туристы в пути?», «Какие машины находятся в автопарке?» лучше задавать общие вопросы: «Что происходит по условию задачи?», «Какие объекты участвуют в задаче?», «Какие части можно выделить в задаче?». Вместо вопроса «Можно ли найти такую-то величину?» лучше задать вопрос: «Что можно найти по данным задачи?», поскольку он может вывести на несколько вариантов решения.
Задавая вопросы, учитель не должен вести учащихся к своему решению; нужно рассмотреть все пути решения, выслушать и обсудить все варианты.
2.Для осуществления целенаправленных мер по исправлению и предупреждению ошибок учителю необходимо систематически изучать ошибки учащихся, выявлять наиболее устойчивые и типичные из них, вести учёт распространённых и индивидуальных ошибок учащихся. Знание учителем типичных ученических ошибок, а также причин их возникновения и проявления даёт ему возможность предвидеть и предупреждать их появление. Достичь этого можно путём подбора таких упражнений, которые препятствуют образованию односторонних ассоциаций и неправильных обобщений.
Ошибки учащихся, которые регистрирует и учитывает учитель, помогают ему установить, что не понимают учащиеся, что ими плохо усвоено; это даёт возможность учителю своевременно ликвидировать пробелы в знаниях учащихся и внести соответствующие коррективы в дальнейшее преподавание с целью предупреждения повторения аналогичных ошибок.
Чтобы определить сущность допускаемых учащимися ошибок, необходимо проследить ход рассуждений, который приводит к такому ошибочному решению, установить этап, на котором зарождаются такие ошибки. Как показывает опыт, часто учащемуся непонятен не весь материал, а лишь какая-то его часть. Выявив, что именно непонятно ученику, можно сосредоточить на этом материале всё внимание, не отвлекаясь на те моменты, которые уже усвоены.
Допускаемые учеником ошибки свидетельствуют не только о недостатках его знаний, но и о потенциальных возможностях. Ошибки служат также показателем проблем, которые могут быть поставлены перед учеником, а иногда они приводят к созданию проблемных ситуаций, которые необходимы в данный момент для развития действий.
Ни в коем случае нельзя снижать оценок ученикам за ошибки в процессе поиска. Очень важно приучить их не бояться допускаемых ошибок. Ошибки, допускаемые учениками, надо исправлять тактично, обоснованно, привлекая к этой работе самих учащихся.
Боязнь допустить ошибку сковывает инициативу ученика. Боясь ошибиться, он не будет сам решать поставленную проблему, а станет ждать помощи от учителя. Он будет решать только лёгкие проблемы. Но без такого самостоятельного решения задач с последовательно нарастающей сложностью не может происходить интеллектуальное развитие. Во многих случаях по этой причине учащиеся проявляют робость и интеллектуальную пассивность, что в дальнейшем приводит к неуспеваемости.
Очень оживлённо воспринимаются учащимися “Задачи на выявление ошибки”. Речь идёт не только о софизмах, но и об ошибках, которые допускают сами школьники. Не нужно специально исправлять каждое ошибочное утверждение школьника. Лучше поставить это утверждение на обсуждение всего класса и добиться осознанного исправления ошибки. Если они и не допускают ошибок, то всё же нередко целесообразно проверить, насколько они “устойчивы” против типичных ошибок.
Например: Найти ошибки:
Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Эти навыки состоят из двух частей: а) умения обнаружить ошибку; в) умения её объяснить и исправить.
В процессе обучения применяются несколько приёмов самоконтроля, которые помогают обнаружить допущенные ошибки и своевременно их исправить. К ним относятся:
-
проверка вычисления и тождественного преобразования путём выполнения обратного действия или преобразования;
-
проверка правильности решения задач путём составления и решения задач, обратных к данной;
-
оценка результата решения задачи с точки зрения здравого смысла;
-
проверка аналитического решения графическим .
Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата. Установление возможных пределов ожидаемого ответа предупреждает недочёты типа описок, пропуска цифр.
Например, рассмотрим задачу: “За неделю завод выпустил 130 холодильников, выполнив месячный план на 25%. Сколько холодильников должен выпустить завод за месяц по плану”.
Пусть решение ученика выглядит так: . Ошибка становится очевидной, если перед решением ученик прикинет в уме: “За неделю завод выпустил 130 холодильников. Следовательно, за месяц он выпустит больше. Значит, ответ должен быть больше, чем 130”. Такая прикидка в уме полезна при решении задач с дробными числами и процентами.
В жизненной практике в чертежах, схемах, расчётах, с которыми ребята будут встречаться, могут быть и ошибки. Если не научить их критически относиться к данным, то могут быть и аварии, и брак, и серьёзные упущения в работе. Чтобы этого избежать, необходимо формировать у учащихся умение анализировать данные, способность обнаруживать встречающиеся ошибки и обосновывать ошибочность положения.
Польский математик Г. Штейнгауз, отмечая большое значение работы над математическими ошибками для активизации мыслительной деятельности учащихся, пишет:
“Если учащегося заверить, что в предложенном ему доказательстве есть ошибка, то можно быть уверенным даже без специальной проверки, что материал будет изучен полностью и очень тщательно”. Поэтому составление списка математических ошибок и использование его в учебных целях является одним из важных факторов повышения эффективности обучения.
Таким образом, важную роль в предупреждении ошибок играет продуманная организация изучения нового материала. Изучение нового материала надо строить так, чтобы ученик был активным участником этого процесса. Не надо бояться, если при первом изложении материала им будут допускаться ошибки, высказываться необоснованные выводы. Важно, чтобы те или иные ошибки в понимании материала исправлялись в зародыше, чтобы ученики воспринимали материал осознанно.
Такому подходу к изучению нового материала способствует создание проблемной ситуации и решение её учащимися под руководством учителя. На таких уроках ученики проходят через следующие стадии: поиск нового, возможное появление ошибок в процессе поиска нового, обоснованное опровержение этих ошибок, снова поиски, в результате которых приходят к правильной догадке, и, наконец, доказательство составленного в поисках предложения. Всё это способствует развитию математического мышления.
Текстовые задача — это способ стимулирования мыслительной активности. Считаю необходимым сформировать такой подход к задаче, при котором задача выступает как объект тщательного изучения, а ее решение — как объект конструирования и изобретения. Необходимо построить процесс обучения математике так, чтобы обеспечить успешное овладение учащимися методами и приемами решения задач и создать условия для формирования у них ряда общенаучных умений — таких, как анализ, синтез, обобщение, сравнение, аналогия.
Необходимо организовать деятельность учащихся на учебном занятии таким образом, чтобы она способствовала формированию исследовательской культуры.
Предлагаю на занятии несколько приемов организации интенсивной мыслительной деятельности, которые используются мною на различных этапах процесса обучения: при актуализации знаний, первичном усвоении материала, его осмыслении, применении и обобщении.
Это можно сделать на следующем содержании материала:
-
Правоцирующие задачи.
Это задачи, условия которых содержат упоминания, указания, намеки или другие побудители, подталкивающие учащихся к выбору ошибочного пути решения или неверного ответа. Попадая в заранее подготовленную ловушку, ученик испытывает досаду, сожаление оттого, что не придал особого значения тем нюансам условия, из-за которых он угодил в неловкое положение. Простое сообщение о том, что учащиеся, как правило, допускают в заданиях такого-то рода ошибки, несравнимо менее действенно. Ибо оно, несмотря на общность, не является для конкретно взятого ученика личностно значимым, поскольку, во-первых, события, о которых сообщается, происходили когда-то давно, в прошлом, не сейчас, а во-вторых, каждый из учащихся наивно полагает, что в число неудачников сам он не попадает.
Дидактическая ценность этих задач в том, что они служат предупреждением от различного рода ошибок и заблуждений.
Провоцирующие задачи обладают высоким развивающим потенциалом, они способствуют воспитанию одного из важнейших качеств мышления- критичности, приучают к анализу воспринимаемой информации, ее разносторонней оценке, повышают интерес школьников к занятиям математикой.
Я использую такие разновидности провоцирующих задач:
-
условия, в которых навязывают неверный ответ;
-
условия, которые подсказывают неверный путь решения;
-
условия, вводящие в заблуждение из-за неоднозначности трактовки и т.д.
В качестве примера приведу задачи, побуждающие выбор неверного способа решения.
Тройка лошадей проскакала 15 км. Сколько километров проскакала каждая лошадь?
Или, на уроке в 6 классе по теме «Простые и составные числа» предлагаю задание: «Какие из чисел 205, 206, 207, 208, 209, 210 являются простыми?»
2.Задачи стандартные с нестандартным решением.
Это задачи, при предъявлении которых учащиеся не знают заранее ни способа их решений, ни того, на какой учебный материал опирается решение. Иными словами, учащиеся в ходе решения таких задач должны провести поиск плана решения задачи, установить, какой теоретический материал дает ключ к тому или иному решению. Незначительная обработка условий той или иной задачи из учебника, изменение места и времени ее постановки существенно меняют ее дидактическую значимость, оставляя неизменным практическое содержание.
Проиллюстрирую сказанное примером. Стандартная задача для учащихся 7 класса: «В клетке находится неизвестное число фазанов и кроликов. Известно, что вся клетка содержит 35 голов и 94 ноги. Сколько фазанов и кроликов в клетке?». Данную задачу предлагаю решить не алгебраическим способом, приводя к стандартному уравнению, а арифметическим. Таким образом, по существу, данную задачу превращаем в нестандартную для шестиклассников и даже семиклассников.
Задачи такого плана всегда органически связаны с изучаемым материалом. Допуская нестандартное решение, приучаю школьников не довольствоваться шаблоном, а нацеливаю на вдумчивый подход, воспитываю стремление как можно лучше выполнить порученное дело. Они развивают гибкость, рациональность, целенаправленность математического мышления и ценны тем, что дается возможность каждому ученику с любой структурой мышления проявить себя.
3. Проблемные задачи.
Это задачи, алгоритм решения которых неизвестен до начала решения. Главное в том, чтобы открыть способ решения и убедиться в его пригодности. Следует иметь в виду, что определить, является данная задача проблемной или нет, можно только относительно конкретного школьника, только с учетом его знаний и умений в момент постановки задачи.
Задачи такого плана решаются исследовательским методом и этим очень интересны для учащихся. Ведь исследование предполагает творчество. Проблемы, которые ставятся перед учащимися, могут иметь разнообразный характер: введение в новую тему, решение задачи новым более эффективным способом, связь известного учебного материала с новым и т.д.
При подборе проблемных задач учитываю знания учащихся и уровень развития их логического мышления, поскольку непосильная задача порождает неуверенность в своих силах и в дальнейшем отвращение от решения любых задач, а излишне простая вводит в заблуждение относительно уровня собственных знаний и умений, не стимулирует поисковую деятельность.
Самое главное- это суметь правильно поставить вопрос, заинтриговать учащихся, создать проблему, а не дать ответ, решив ее. Учащиеся познают понятия, закономерности, теории в ходе поиска, наблюдения, анализа фактов, мыслительной деятельности, результатом чего является знание.
Приведу пример задачи из темы «Смежные углы» (геометрия 7 класс).
Найти два смежных угла, один из которых больше другого на прямой угол.
Возможны различные варианты решения, в частности, алгебраический и геометрический. Здесь проблемный характер проявляется в неявной форме, но ученики понимают непригодность геометрического способа решения.
Другой пример. В 5 классе в ходе изучения темы «Сравнение десятичных дробей» предлагаю вариант решения задания на сравнение дробей 0,31 и 0,6 ученика Петрова. Если целые части дробей равны, сравним дробные части: 316, значит, 0,31
0,6. Согласны ли вы с таким решением? Начинается обсуждение, поиск, анализ решения.
-
Логические задачи.(задачи-шутки, таблицы, верные и неверные утверждения, здравый смысл)
Это задачи, ведущие к формированию важнейших характеристик творческих способностей: беглость мысли, гибкость ума, оригинальность, любознательность, умение выдвигать и разрабатывать гипотезы.
Опыт работы показывает, что глубокие, прочные и, главное, осознанные знания могут получить все школьники, если развивать у них не столько память, сколько логическое мышление. Логика учит, как нужно рассуждать, чтобы наше мышление было определенным, связанным, последовательным, доказательным и непротиворечивым. В математике приходится путем рассуждений выводить разнообразные формулы, числовые закономерности, правила, доказывать теоремы.
Основные методы решения логических задач:
-
метод рассуждения;
-
метод таблицы;
-
метод граф;
-
метод кругов Эйлера;
-
комбинированный метод.
Метод рассуждений сопровождаю схемами, чертежами, краткими записями, вырабатывая умения выбирать информацию, пользоваться правилом перебора.
Так, при изучении темы «Степень» в 7 классе, я даю задание: запишите степени x, x2, x3, x4, x5, x6, x7, x8, x9 в пустые клетки квадрата так, чтобы произведение их по любой горизонтали, вертикали и диагонали было равно x в 15 степени. Можно рассказать о магическом квадрате, тогда задача станет еще интереснее для учеников.
X5 |
||
Таблицы хорошо применять тогда, когда устанавливается соответствие между двумя множествами (можно и между тремя множествами), когда количество элементов во множествах одинаково и неодинаково. Перед составлением таблиц отрабатываю правила их заполнения.
Например, в 5 классе знакомлю детей с задачей Пуассона (на переливание). Некто имеет 12 пинт сока (пинта- 0,57л) и желает подарить половину своему другу, но у него нет сосуда в 6 пинт, а есть два сосуда в 8 и 5 пинт. Каким образом можно налить 6 пинт сока в сосуд емкостью 8 пинт?
Решение.
Ходы |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
12 пинт |
12 |
4 |
4 |
9 |
9 |
1 |
1 |
6 |
8 пинт |
— |
8 |
3 |
3 |
— |
8 |
6 |
6 |
5 пинт |
— |
— |
5 |
— |
3 |
3 |
5 |
— |
Логические связи, при помощи которых была выстроена общая схема решения задачи, помогут учащимся без труда решить подобного рода задачу.
Введение серии таких задач в содержание урока считаю необходимым. Это позволит стереть явную границу между занимательным и учебным материалом. Особенно целесообразно использовать задачи тогда, когда есть опасность неприятия учащимися какого-либо учебного задания; при прохождении сложных тем; при выработке умений и навыков учащихся, когда требуется выполнить значительное количество однотипных упражнений; при изучении материала, подлежащего прочному запоминанию.
Для каждой задачи, которую предполагаю использовать на уроке, прежде выясняю: будет ли она интересна классу, органично ли войдет в структуру урока, будет ли ее использование эффективным. Практика показала: учебный навык, на формирование которого направлена та или иная задача, вырабатывается быстрее, ибо он связан с продуктивной мыслительной деятельностью ученика.
При работе над провоцирующими, проблемными, логическими и стандартными с нестандартным решением задачами наиболее эффективной считаю групповую, парную, индивидуальную, фронтальную работу.
Приведу пример. Расстояние от реки до турбазы туристы рассчитывали пройти за 6 часов. Однако после 2 часов пути они уменьшили скорость на 0,5 км/ч и в результате опоздали на турбазу на 30 мин. С какой скоростью шли туристы первоначально?
Работа над задачей предполагает следующие действия учителя:
-
Предъявление задачи (читает учитель).
-
Определение вида задачи (творческая группа).
-
Выделение гипотез (индивидуальная самостоятельная работа).
-
Обмен мнениями (в творческой группе).
-
Формулировка предположительного ответа (в паре).
-
Проверка ответа на достоверность (фронтальная работа).
Или, задача. Определить площадь равнобедренной трапеции, у которой основания равны 12см и 20см, а диагонали взаимно перпендикулярны.
-
Предъявление задачи (творческие группы составляют задачи по готовому чертежу).
-
Выделение гипотез (работа в парах).
-
Обмен мнениями (фронтальная работа).
-
Формулировка предположительного ответа (индивидуальная работа).
-
Проверка ответа на достоверность (индивидуальная работа).
Обязательным этапом на уроке является устный и письменный счет. Целями устного счета являются, во-первых, совершенствование в вычислительных навыков, во-вторых, развитие творческого мышления учащихся.
На своих уроках я стараюсь разнообразить формы и методы устной работы:
— устный счет в начале, в середине, в конце урока;
-
устная форма проверки домашнего задания;
-
устная форма творческой работы;
-
устные самостоятельная и контрольная работы;
-
уроки устной работы.
Работая устно, воспитываю у учащихся навыки сознательного усвоения изучаемого материала, приучаю ценить и экономить время, развиваю желание поиска рациональных путей решения задачи. В этих целях использую такие приемы, развивающие творческие способности, как «Зашифрованные задания», «Найди ошибку», «Восстановление»,
«Выбор», «Задачи- сказки», детские презентации на устный счёт, математические листы с задачами, изготовленные самими учащимися, ребусы, кроссворды, которые учащиеся составляют самостоятельно.
Обязательно провожу подробный анализ результатов работы и коррекцию знаний. Объявляя количество набранных баллов, полученных за олимпиадное задание, называю ребят, которые представили самые «красивые» решения. При этом опираюсь на формулу «красивой» задачи по В.Г. Болтянскому: красивая задача = непредсказуемость + непредполагаемость +неожиданность + удивительная простота + простота + фантазия + революционный шаг + удивление + оптимизм + труд + …
Таким образом, решение текстовых задач не случайно всегда волновало учителей, методистов, да и самих учащихся и их родителей.
Во-первых, нельзя решить задачу, не поняв ее содержание. Следовательно, умение решать текстовые задачи свидетельствует об одной из самых важных способностей человека — способности понимать текст. Правы те учителя, которые добиваются понимания текста не только на уроках чтения, но и на уроках математики. Критерием понимания задачи является факт решения задачи.
Поэтому решение текстовых задач — это деятельность, весьма важная для общего развития. Обучая решать текстовые задачи, мы приучаем ориентироваться в ситуациях, делаем человека более компетентным. Конечно, для этого нужно резко расширить тематику задач, давать детям задачи, разнообразные по тематике, а не только «на скорость», «на работу», «на покупки».
Решение текстовых задач способствует, с одной стороны, закреплению на практике приобретённых умений и навыков, с другой стороны, развитию логического мышления учащихся.
Наблюдается активизация их мыслительной деятельности. При правильной организации работы у учащихся развивается активность, наблюдательность, находчивость, сообразительность, смекалка, развивается абстрактное мышление, умение применять теорию к решению конкретных задач.
Ошибки учащихся при изучении математики, их предупреждение и объяснение
методическая разработка по алгебре по теме
В данной работе рассматриваются типичные ошибки, которые допускают учащиеся при выполнении математических заданий. Здесь разобраны причины, способы исправления и предупреждения ошибок, разобраны конкретные ошибки из курса алгебры и начал анализа и способы их объяснения и устранения, указаны ошибки в работах государственной итоговой аттестации учащихся 9 и 11 классов. Рассмотрены ошибки по математике в учебниках и методической литературе. Материал, представленный в работе, может заинтересовать учителей математики.
Скачать:
Вложение | Размер |
---|---|
rabota_issled_oshibki1.docx | 66.99 КБ |
Предварительный просмотр:
Ошибки учащихся при изучении математики,
их предупреждение и объяснение
Дука Наталья Ивановна
учитель математики МОУ «СОШ №4 г. Ртищево Саратовской обл.» ____________________________
В данной работе рассматриваются типичные ошибки, которые допускают учащиеся при выполнении математических заданий. Здесь разобраны причины, способы исправления и предупреждения ошибок, разобраны конкретные ошибки из курса алгебры и начал анализа и способы их объяснения и устранения, указаны ошибки в работах государственной итоговой аттестации учащихся 9 и 11 классов. Рассмотрены ошибки по математике в учебниках и методической литературе. Материал, представленный в работе, может заинтересовать учителей математики.
В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная.
Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.
Объект исследования: процесс обучения математике в основной общеобразовательной школе.
Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.
Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.
Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления.
Необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.
Самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления.
Пример неосознанного применения алгоритма: получив уравнение sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x.
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок.
Некоторые учащиеся считают, что arcsin(sink)= k при любом k и дают такой ответ: arcsin(sin ) = . Это очень грубая ошибка. Аналогичное задание «вычислить arctg(tg130 о )» вызывает у учащихся неверный ответ 130 о .
Иногда ученики используют неверную формулу, не задумываясь над ней.
Например, определяя, является ли число рациональным, ученик пишет: = и получает неверный ответ,
При работе с «многоэтажными дробями» ученики делают много ошибок. Например: . Должна появиться верная запись .
При выполнении преобразований со степенями учащиеся не только допускают ошибки, но просто забывают формулы, например формулу
Пример ошибки на свойство степени: . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Необходимо в результате записать формулу .
Встречаются ошибки от непонимания. Большинство учащихся, решая впервые неравенство х 2 4, приводят неверное решение х 2.
Выполняя тригонометрические задания, ученик часто «изобретает формулы», например: «sin 2 х = 2 sin x».
Систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого подходят задания типа «найди ошибку в решении». Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся.
Учебный год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний.
В учебнике Л. С. Атанасяна и других «Геометрия 7-9» была приведена некорректно составленная задача № 536: «Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠ ВDС = ∠ С». Треугольник, описанный в условии задачи, не существует.
Объяснение деления с остатком круглых чисел в теме «Деление круглых чисел» ( урок 66) учебника математики для 4 –ого класса (Т. Е. Демидова, С. А. Козлова, А. П. Тонких) дается с ошибкой.
В газете «Математика» предлагается уравнение и к нему ответ:1. Приведенное решение неверное, так как приводит к потере корней.
Вспоминается расхожая истина – умные люди учатся на чужих ошибках. В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная. Нужно лишь правильно относиться к ошибке, правильно ее использовать.
Обидно получать плохие оценки из-за ошибок «на ровном месте». Глупые ошибки – проблема многих учеников: случайная потеря знака, скобки, необоснованное изменение чисел, пропуски переменных и всевозможные ляпы. Сами ученики не могут объяснить, чем вызваны эти ошибки.
Причины ошибок, допускаемых учащимися при изучении математики
Проблема исследования состоит в теоретическом обосновании и разработке такой методики обучения математике, которая создавала бы условия для развития рефлексивной деятельности учащихся, способствующей предупреждению типичных ошибок.
Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.
Объект исследования: процесс обучения математике в основной общеобразовательной школе.
Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.
Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.
Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления. Снижает, но не исключает. Можно ли избавиться от таких ошибок? Ученик знает, что нужно решать внимательно, но ничего не может с собой поделать.
Известно, что осознание правила или определяет действия, или, по крайней мере, их контролирует. Знание правила необходимо и для того, чтобы осуществить проверку решения и дать его обоснование. Но большинство учащихся воспринимают курс алгебры как набор несвязанных между собой правил, которые заучиваются (иногда формально) для применения их к решению задач. Поэтому необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.
Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.
Выполняя математические задания, учащиеся допускают типичные ошибки:
- Незнание правил, определений, формул.
- Непонимание правил, определений, формул.
- Неумение применять правила, определения, формулы.
- Неверное применение формул.
- Невнимательное чтение условия и вопроса задания.
- Вычислительные ошибки.
- Не использование свойств фигур при решении геометрических задач.
- Логические ошибки при решении текстовых задач.
- Раскрытие скобок и применение формул сокращенного умножения.
Какие причины ошибок по математике?
- Пропуски занятий приводят к незнанию материала, пробелам в знаниях.
- Поверхностное, невдумчивое восприятие нового материала приводят к непониманию его.
- Недостаточная мозговая деятельность приводит к неумению применять правила, определения и формулы .
- Неряшливый, неаккуратный почерк ученика приводит к досадным ошибкам. Учащиеся не всегда сами понимают, что именно они написали.
- Усталость. Чрезмерная нагрузка и недостаточный сон приводит к снижению внимания, скорости мышления и, как следствие, к многочисленным ошибкам.
- Кратковременное или полное переключение внимания с одной деятельности на другую (учебную или внеучебную) приводит к утрате только что воспринятого материала, приходится все начинать сначала.
- Скорость работы. Низкая скорость выполнения мыслительных операций часто мешает ученику контролировать себя и это может стать еще одной причиной ошибки. «Зависание» с какой-нибудь одной частью задания удаляет из «оперативной памяти» информацию о другой, в которой допускается не вынужденная ошибка. Скорость работы определяется физиологией конкретного школьника и навыками выполнения тех или иных операций.
- Мотивация. Следствие низкой мотивации – потеря внимания и ошибка.
Работа над ошибками
В приемах работы над ошибками отсутствует диагностика причин ошибок. Не уделяется должного внимания работе по формированию рефлексивной деятельности учащихся и ее использованию в работе по предупреждению и исправлению математических ошибок. При отсутствии должной доли самостоятельности при работе над ошибками, совершаемые учеником действия никак не контролируются, допущенные ошибки не замечаются, причины их появления остаются невыясненными, что приводит к их повторению. Напротив, самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления. При этом у школьников постепенно развиваются стремление и умение разобраться в задаче, планировать ее решение, продумывать возможные варианты действий и прогнозировать их результаты. Например, ученик многократно применяет к преобразованию алгебраических выражений формулы квадрата суммы и разности двух чисел, но получив задание представить в виде многочлена
( – х – 5) 2 , теряется. Следует предложить учащемуся ответить на вопрос что вызывает затруднение? И как преобразовать выражение, чтобы можно было применить одну из формул в том виде, в каком они предложены в учебнике. Другой пример неосознанного применения алгоритма: получив уравнение
sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x. Полезно предложить ученику представить наглядное решение на тригонометрическом круге.
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Эти навыки состоят из двух частей: а) умения обнаружить ошибку; б) умения её объяснить и исправить. В процессе обучения применяются несколько приёмов самоконтроля, которые помогают обнаружить допущенные ошибки и своевременно их исправить. К ним относятся:
- проверка вычисления и тождественного преобразования путём выполнения обратного действия или преобразования;
- проверка правильности решения задач путём составления и решения задач, обратных к данной;
- оценка результата решения задачи с точки зрения здравого смысла;
- проверка аналитического решения графическим способом.
Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата. Установление возможных пределов ожидаемого ответа предупреждает недочёты типа описок, пропуска цифр.
Например, рассмотрим задачу: “За неделю завод выпустил 130 холодильников, выполнив месячный план на 25%. Сколько холодильников должен выпустить завод за месяц по плану”.
Ученик написал = 52, ошибка становится очевидной, если перед решением ученик прикинет в уме: “За неделю завод выпустил 130 холодильников. Следовательно, за месяц он выпустит больше. Значит, ответ должен быть больше, чем 130” .
Объяснение и предупреждение ошибок
Свести ошибки к минимуму способствуют следующие профилактические меры.
- Тексты письменных заданий должны быть удобными для восприятия: грамотно сформулированными, хорошо читаемыми.
- Активная устная отработка основных ЗУН, регулярный разбор типичных ошибок.
- При объяснении нового материала предугадать ошибку и подобрать систему заданий на отработку правильного усвоения понятия. Акцентировать внимание на каждом элементе формулы, выполнение разнотипных заданий позволит свести ошибочность к минимуму.
- Подбирать задания, вызывающие интерес, формирующие устойчивое внимание.
- Прочному усвоению (а значит, отсутствию ошибок) способствуют правила, удобные для запоминания, четкие алгоритмы, следуя которым заведомо придешь к намеченной цели.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок. В математике, как ни в какой другой науке, особенно сильна взаимосвязь материала. Изучение и понимание последующего невозможно без знания предыдущего, отсюда неизбежность повторения на каждом уроке. При объяснении нового материала следует использовать ряд определений и теорем, которые были изучены ранее.
Например, перед изучением темы «Теоремы сложения» следует повторить следующие теоретические вопросы:
1. Четные и нечетные функции.
2. Изменение тригонометрических функций при возрастании и убывании аргумента.
3. Знаки тригонометрических функций.
4. Таблицы значений тригонометрических функций.
А также выполнить задания:
1. Определите четность и нечетность тригонометрической функции:
а) y = – cos x + x 2 ; б) y = sin 2 x; в) y = .
2. Найдите область определения функции y = x 2 – 6x + 10.
3. При каких значениях x функции y = sin x и y = cos x принимают одинаковые значения?
Перед прохождением темы «Первообразная и интеграл» повторяем все формулы дифференцирования. Затем предлагается самостоятельная работа (на 10–15 мин), на которой ученики получают карточки-задания, в которых «опущены» один–два компонента из формулы дифференцирования и приведены две функции, производные которых необходимо найти. После проверки самостоятельной работы анализируем допущенные ошибки, определяем пробелы в знаниях и проводим работу по их устранению.
Рассмотрим ошибки, допускаемые в курсе алгебры и начал анализа. Задание. Найти точное значение arcsin (sin ).
Некоторые учащиеся считают, что arcsin(sink)= k при любом k и дают такой ответ: arcsin(sin ) = . Это очень грубая ошибка. По определению . Следовательно, число arcsin(sin ) должно принадлежать промежутку , число этому промежутку не принадлежит. Имеем: arcsin (sin ) = arcsin (sin )) = arcsin (sin ) = arcsin =
Аналогичное задание «вычислить arctg(tg130 о )» вызывает у учащихся неверный ответ 130 о . Можно исправить ошибку следующим образом: учитывая, что 90 о 90 о для любого и arctg (tgх) = х при
х arctg (tg130 о ) = arctg (tg180 о 50 о ) = arctg (tg( 50 о )) = 50 о . Существует второй способ решения. Пусть arctg (tg130 о ) = х, получаем tg х = tg (arctg (tg130 о )), откуда tg х = tg 130 о . По условию равенства тангенсов имеем х = 130 о + k, где k Z. Учитывая область определения функции у = arctg х, где х ( 90 О ; 90 О ), при k = 1 х = 130 о 180 о = 50 о .
Рассмотрим еще один пример правильного решения аналогичного задания вычислить arcsin(sin2) при неверном ответе учащихся «2». Решение: arcsin (sink) = k, если , arcsin (sin2) = arcsin (sin( ) = 2, т. к. 2 .
Иногда ученики используют неверную формулу, не задумываясь над ней. Например, определяя, является ли число рациональным, ученик пишет: = и получает неверный ответ, выполняя преобразование иррационального выражения, учащийся получил = х+2. Во-первых, учащиеся забывают, что , во-вторых, опять ошибочная аналогия с формулой = , где Применение «формулы = » в классе обязательно происходит независимо от того, повторяются свойства радикалов на уроках или нет. Ученик проводит аналогию с формулой = , где и не понимает, почему он неправ. Если заставить ученика написать правильно по свойству, то долговременного эффекта не получится. Необходимо, чтобы ученик понял и осознал свою ошибку. Для этой цели пригоден совет: вычислите по тому алгоритму, который только что применили, имеем = и по действиям 2 = 1 и определите, какое решение верное. Ученик задумывается и находит ошибку.
Можно предложить учащимся проверить себя, взяв, например, значение х = 2 но ;
Делаем вывод: преобразование выполнено неверно, формула « = » не существует и
При работе с «многоэтажными дробями» ученики делают много ошибок. Например: . Нужно посоветовать ученику проверить написанное при конкретных значениях переменных. Так, при a = b = 1, c = 2, получим , с другой стороны , тогда 2= В результате ученик должен сделать вывод, что при работе с «трехэтажными дробями» лучше ставить скобки, чем сравнивать длины дробных «черточек»: . И, разумеется, должна появиться верная запись .
При выполнении преобразований со степенями учащиеся не только допускают ошибки, но просто забывают формулы, например формулу
a n a m = a n+m . Полезно учащимся показать, как они могут вспомнить формулу, пользуясь определением степени, например a 3 a 4 =aaa =a 7 =a 3+4 . Применяя определение степени в подобных ситуациях, учащиеся могут вывести любую формулу действий со степенями. Аналогично можно показать ошибки в действиях со степенями.
Ещё пример ошибки: . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Следует привести конкретный пример с удобным вычислением
= . Здесь же можно предложить другой способ
Необходимо в результате записать формулу .
Встречаются ошибки от непонимания. Большинство учащихся, решая впервые неравенство х 2 4, приводят неверное решение х 2. Полезно в этом случае предложить учащимся проверить число, например. -3, при этом учащиеся убеждаются в неверности ответа. Можно показать три способа решения этого неравенства. 1 способ тот, которым и пользовались учащиеся « », но допустили следующую ошибку « =х». Верное решение Этот способ решения содержит опасный момент – необходимо обратить внимание на возрастание функции у = при х 0, иначе в дальнейшем будут еще ошибки при решении неравенств. Второй способ основан на методе интервалов х 2 4, х 2 ,
(х-2)(х+2) 0, . Третий способ графический.
Выполняя тригонометрические задания, ученик часто «изобретает формулы», например: «sin 2 х = 2 sin x». В этом случае можно поступить двумя способами: подставить х = /6 и получить неверное равенство sin 2sin , /2 = 2 1/2 или вспомнить определение sin х на тригонометрическом круге. Наглядно хорошо видно, что sin 2х 2sinх. Обращение к тригонометрическому кругу всегда полезно повторением определения тригонометрических функций и наглядностью определений.
Не нужно специально исправлять каждое ошибочное утверждение ученика и предупреждать его об ошибках. Лучше поставить это утверждение на обсуждение всего класса и добиться осознанного исправления ошибки. Практика показывает, что систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого подходят задания типа «найди ошибку в решении»:
Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.
Анализ работ ГИА и ЕГЭ
Анализ работ государственной итоговой аттестации учащихся 11-х классов показал, что типичные ошибки допущены при:
- преобразовании дробно-рациональных выражений, содержащих корень
- исследовании функций на наибольшее и наименьшее значения;
- решении показательных и логарифмических неравенств (отсутствует ссылка на соответствующие свойства функций);
- вычислении площади криволинейной трапеции;
- построении графика функции с модулем;
- изображении тел вращения в геометрической задаче;
- теоретическом обосновании используемых формул и фактов при решении задачи по стереометрии;
- построении множества точек плоскости, удовлетворяющего заданному условию;
- решении задач с параметром.
Для повышения уровня учебных достижений учащихся на ГИА за курс старшей школы рекомендуется обратить внимание на следующие темы и разделы курса алгебры и начал анализа и геометрии:
- комбинация тел;
- углы в пространстве;
- производная и её применение к исследованию функции на отрезке;
- построение ГМТ, удовлетворяющего заданным условиям;
- логарифмические и показательные неравенства;
- тригонометрические функции и их свойства;
- тождественные преобразования дробно-рациональных выражений, содержащих корень n-ой степени.
Учебный год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний, построение и развитие межпредметных связей и осознание взаимосвязи с ранее выученными темами, на подготовку к итоговому оцениванию знаний, установлению формально-логических подходов к построению курса школьной математики, закрепление необходимости обосновывать и доказывать математические факты.
Ошибки в учебниках и методической литературе
В учебнике Л. С. Атанасяна и других «Геометрия 7-9» была приведена задача № 536: «Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠В DС = ∠С».
ВD – биссектриса АВС =
∠В DС = ∠С В DС равнобедренный ВD = DС =
Решим задачу вторым способом.
ВЕ – высота АВС. Пусть DЕ = х. Из прямоугольных треугольников АВЕ и DВЕ получаем:
АВ 2 – АЕ 2 = ВD 2 – DЕ 2 ,
30 2 – (20 + х) 2 = 16 2 – х 2 ,
900 – 400 – 40х – х 2 = 256 – х 2 ,
ВЕ высота и медиана DЕ = СЕ СD = 2х = 12,2. Получили несоответствие с ответом первого способа решения.
Проверим, существует ли треугольник, у которого выполнены условия: ∠В DС = ∠С и ∠АВ D = ∠ DВ С. Найдем величины ∠ DВС, ∠В DС, ∠С.
А D 2 = АВ 2 + ВD 2 – 2 cos ∠AВ D
Тогда ∠АВ D 38,5 о . ∠ DВС = ∠АВ D 38,5 о .
Аналогично cos ∠A DВ =
Тогда ∠А DВ = 180 о – 67,59 о ∠В DС 67,59 о . Из ВDС
∠С = 180 о – 38,05 о – 67,59 о = 74,36 о ,
Отсюда следует, что ∠В DС ∠С и треугольник DВС неравнобедренный.
Значит, задача составлена некорректно: треугольник, описанный в условии задачи, не существует.
Возможны два корректных варианта задачи:
- Дан треугольник АВС, точка D лежит на стороне ВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠В DС = ∠С.
В этом случае В D не является медианой. По второму способу получаем СD = 12,2.
- Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30. АD = 20, ВD = 16 .
∠В DС ∠С, в этом случае из треугольника DВС по теореме синусов получаем
В действующем учебнике задача № 536 имеет вид:
Отрезок BD является биссектрисой треугольника АВС. а) Найдите АВ, если ВС = 9 см, АD = 7,5 см, DС = 4,5 см. б) Найдите DС, если АВ = 30. АD = 20, ВD = 16 .
Посмотрим объяснение деления с остатком круглых чисел в теме «Деление круглых чисел» ( урок 66) учебника математики для 4 –ого класса (Т. Е. Демидова, С. А. Козлова, А. П. Тонких).
Цитируем: «Прочитай, объясни и проверь записи.
190 : 20 = 190 : 10 : 2 = 9 ( 1 остаток)
190 : 20 = 19 д. : 2 д. = 9 ( 1 остаток)
4700 : 500 = 4700 : 100 : 5 = 9 ( 2 остаток)
4700 : 500 = 47 с. : 5 с. = 9 ( 2 остаток)»
Проверяем 20 ∙ 9 + 1 = 190 – равенство неверное, делаем вывод: ошибка при выполнении деления с остатком. В чем ошибка? Анализируем 1-ое равенство 190 : 20 = 190 : 10 : 2 = 19 : 2, получаем деление числа 19 на число 2 и соответственно остаток от деления 19 на 2, но не от деления 190 на 20, действительно 19 : 2 = 9 ( 1 остаток). В этом случае 19 показывает, сколько десятков содержится в числе 190, поэтому остаток так же получаем в десятках, но не в единицах.
Анализируем 2-ое равенство 190 : 20 = 19 д. : 2 д. здесь мы делим десятки, поэтому остаток также будет в десятках 9 о чем сказано ранее), т, е. получаем 19 д. : 2 д. = 9 (1 д. остаток), проверкой убеждаемся в истинности деления 9 ∙ 2 д. + 1 д. = 19 д. = 190.
Предлагаем верные записи:
190 : 20 = 190 : 10 : 2 = 9 ( 1 д. остаток)
190 : 20 = 19 д. : 2 д. = 9 ( 1 д. остаток)
4700 : 500 = 4700 : 100 : 5 = 9 ( 2 с. остаток)
4700 : 500 = 47 с. : 5 с. = 9 ( 2 с. остаток).
В газете «Математика» предлагается уравнение и к нему ответ:1. Предложено решение уравнения по следующей схеме:
a f(x) b g(x) = a p b p
Приведенное решение неверное, так как приводит к потере корней. данное уравнение следует решать по схеме:
a f(x) b g(x) = a p b p a f(x )– р b q – g(x)
Вернемся к данном уравнению.
Хотя проблемы формирования и развития рефлексивной деятельности в процессе обучения и поиск новых форм работы над математическими ошибками школьников и не являются абсолютно новыми, изучение такого аспекта, как использование рефлексивной деятельности учащихся при работе над типичными ошибками всегда актуальны. В данной работе рассмотрены некоторые типичные ошибки, допускаемые учащимися при изучении математики, их объяснение, меры их предупреждения. Хорошо организованная учителем работа учащихся над типичными ошибками посредством исследовательского приема приводит к улучшению результата обучению математики и развитию рядя показателей логического мышления. К тому же предмет «математика» настолько сложен, что даже методисты допускают ошибки.
- Далингер В. А. «Анализ типичных ошибок, допускаемых в курсе алгебры и начала анализа» «Математика в школе» 6-98
- 2-98 Ярский А. С, «Что делать с ошибками»
- Хэкало С. П. «Корни терять нельзя» 5-98
- Игнатенко В. З. «Сюрпризы биссектрисы» 5-98
math4school.ru
Ошибки в уравнениях
При выполнении контрольных, тестовых и экзаменационных работ по математике учащиеся решают самые разнообразные уравнения, отличающиеся по тематике и по сложности. Разобрать все ошибки, которые при этом допускаются, не представляется возможным. Ниже предлагаются примеры лишь наиболее распространенных ошибок и анализ ситуаций, в которых эти ошибки допускаются.
Потеря корней
При решении уравнений из-за выполнения нетождественных преобразований может произойти либо потеря корней , либо появление посторонних корней .
При выполнении нетождественных преобразований в процессе решения уравнения может произойти сужение области допустимых значений неизвестного , а значит, корни могут оказаться потерянными.
K Упражнение. Решить уравнение lg (x – 10) 2 + lg x 2 = 2lg 24 .
L Неправильное решение.
2lg (x – 10) + 2lg x = 2lg 24,
Произвели проверку и убедились, что все корни удовлетворяют данному уравнению.
Комментарий . Из-за неправильного применения формул произошло сужение области допустимых значений неизвестного.
J Правильное решение.
Ответ: –2; 4; 6 и 12.
При делении обеих частей уравнения на выражение, содержащее неизвестное , могут быть потеряны корни, которые обращают эти выражения в ноль.
K Упражнение 1. Решить уравнение 3 х ( х 2 – 2 х – 3) = 9 ( х 2 – 2 х – 3) .
L Неправильное решение.
Разделим обе части уравнения на квадратный трехчлен, записанный в скобках, и получим:
J Правильное решение.
Перенесем правую часть исходного уравнения влево и вынесем общий множитель за скобки:
K Упражнение 2. Решить уравнение lg 2 x – lg x = 0 .
L Неправильное решение.
Разделим обе части уравнения на lg x и получим:
J Правильное решение.
Необходимо помнить, что обычно легче исключить посторонний корень, чем найти потерянный.
Посторонние корни
При решении уравнений существуют два диаметрально противоположных мнения относительно полученного результата. Одни считают, что проверка должна производиться всегда, другие считают ее необязательной. На самом деле проверка полученных корней в одних случаях является обязательной и является частью решения уравнения, а в других случаях в проверке необходимости нет.
Проверка полученного решения уравнения обычно делается с целью исключения посторонних корней, которые чаще всего появляются в результате нетождественных преобразований, приводящих к расширению области допустимых значений переменного. Рассмотрим далее некоторые случаи появления посторонних корней.
Это может случиться при умножении обеих частей дробного уравнения на выражение, содержащее неизвестную величину .
K Упражнение. Решить уравнение
5 – x | – | 5 + 3х | = 0 . |
x – 1 | x 2 – 1 |
L Неправильное решение.
Умножим все члены уравнения на х 2 – 1 и получим:
Комментарий . Был приобретен посторонний корень х = 1, в чем можно убедиться с помощью проверки .
J Правильный ответ: х = 0.
Появление посторонних корней может быть вызвано сокращением дроби на множитель, содержащий неизвестную величину .
K Упражнение. Решить уравнение
L Неправильное решение.
Заметим, что х 2 – 81 = (x – 9) (x + 9) и произведем сокращение дроби на x – 9 . Имеем:
Комментарий . Был приобретен посторонний корень х = 9 .
J Правильный ответ: решений нет.
Приведение подобных слагаемых с неизвестным в знаменателе, в том случае, если они взаимно уничтожаются, также может привести к приобретению постороннего корня.
K Упражнение. Решить уравнение
2 | + х 2 – | 2 | – 4х = 0 . |
3х 2 | 3х 2 |
L Неправильное решение.
После приведения подобных слагаемых получим:
Комментарий . Был приобретен посторонний корень х = 0 .
J Правильный ответ: 4 .
Заметим, что аналогичная ситуация может сложиться и для слагаемых, содержащих переменную под знаком корня или под знаком логарифма.
Очень часто посторонние корни появляются при возведении в четную степень обеих частей уравнения . Рассмотрим следующее иррациональное уравнение и на его примере – процесс появления посторонних корней.
K Упражнение. Решить уравнение √ х + 3 + √ 7 – х = 2 .
L Неправильное решение.
И число –2 , и число 6 содержатся в области допустимых значений переменной х , значит, являются решениями исходного уравнения.
Комментарий . Оба корня посторонние и были приобретены в процессе решения. Как же это произошло? Дело вот в чем. В процессе решения с помощью возведения в квадрат и элементарных преобразований мы перешли от уравнения
Последнему уравнению число –2 удовлетворяет, после подстановки получаем верное равенство 1 = 1 . Предыдущее же уравнение при подстановке –2 дает ложное равенство 1 = –1 , которое стало верным именно в результате возведения в квадрат, ведь 1 2 = (–1) 2 . Число –2 является корнем второго уравнения, для первого – посторонний корень. А вот число 6 не является корнем ни одного из них.
Шестерка выходит на арену при переходе от уравнения
которое уже имеет один корень –2 , к уравнению
Теперь возведение в квадрат превращает ложное равенство 2 = –2 в истинное равенство 4 = 4 , которые соответствуют этим уравнениям для случая х = 6 . Для последнего уравнения 6 – истинный корень, а для предпоследнего – ложный. И вот, путем преобразований мы получаем уравнение
для которого числа –2 и 6 — самые настоящие корни, а для исходного — посторонние. Два раза мы применяли возведение в квадрат и каждый раз приобретали посторонний корень, каждый из которых благополучно преодолел фильтр ОДЗ. В данном случае проверка обязательна.
J Правильный ответ: решений нет.
Необходимо помнить, что если область допустимых значений неизвестного найдена и при решении уравнения получены корни, принадлежащие ей, то проверка корней не нужна, только если при этом в процессе решения все преобразования были тождественными.
Если при решении уравнения используется тот факт, что произведение равно нулю, когда хотя бы один из множителей равен нулю , прежде чем писать ответ, необходимо убедиться, что все найденные корни удовлетворяют условию.
K Упражнение. Решить уравнение ( x – 5) (х + 2) √ х – 3 = 0 .
L Неправильное решение.
Перейдем от данного уравнения у совокупности уравнений:
Комментарий . Число –2 обращает подкоренное выражение х – 3 в отрицательное число, а значит не может быть корнем уравнения.
J Правильный ответ: 5 и 3 .
Часто причиной изменения множества корней уравнения во время его преобразования является применение равенств, правая и левая части которых имеют разные области определения . Таких равенств много, вот некоторые из них:
tg ( x + y ) = | tg x + tg y |
1 – tg x · tg y |
sin 2 x = | 2 tg x |
1 + tg 2 x |
В каждом из этих равенств область определения выражения, стоящего в правой части, является подмножеством области выражения, стоящего в левой части. Поэтому использование этих равенств слева направо может привести к потере корней, а справа налево – к появлению посторонних корней .
L Неправильное решение.
так как х ≥ 3 , то |х – 1| = х – 1 и
Комментарий . Применение формулы √ х · y = √ х · √ y привело к потере корня x = 1 . И вот почему. Исходное уравнение имеет область допустимых значений <1>∪[3; +∞) , а вот уже ОДЗ уравнения (left| x-1right|cdot sqrt=x-1) – только [3; +∞) , что и привело к потере 1 .
Можем порекомендовать возвести обе части исходного уравнения в квадрат. Это может привести к появлению посторонних корней, избавиться от которых проверкой, как правило, проще, чем заниматься поисками потерянных корней.
J Правильное решение.
(left(x-1 right)^2cdot left(x-3 right)=left(x-1 right)^2;)
(left(x-1 right)^2cdot left(x-3 right)-left(x-1 right)^2=0;)
(left(x-1 right)^2cdot left(x-4 right)=0;)
Проверкой убеждаемся, что оба корня действительные.
Ошибки, связанные с заменой переменной
При решении некоторых уравнений достаточно удачным является метод замены переменной . Но применение этого метода учащиеся осуществляют не всегда правильно.
Так необходимо помнить, что при наличии нескольких степеней заменять новой переменной надо ту, у которой показатель наименьший .
K Упражнение. Решить уравнение (5 left(x-3 right)^<1/4>-6=left(x-3 right)^<1/2>.)
L Неправильное решение.
Сделав замену ( left(x-3 right)^<1/2>=t), считают, что ( left(x-3 right)^<1/4>=t^2) и уравнение переписывают в виде 5t 2 – t – 6 = 0 , после чего, конечно, верный результат уже не получить.
J Правильное решение.
Верный результат можно получить, сделав замену ( left(x-3 right)^<1/4>=t), тогда ( left(x-3 right)^<1/2>=t^2) с продолжением:
Правильно сделав замену и верно найдя значение вспомогательной переменной, учащиеся часто допускают ошибку, используя не то равенство, которым вспомогательная переменная вводилась .
K Упражнение. Решить уравнение х + 4 √ x – 5 = 0 .
L Неправильное решение.
Комментарий . После нахождения значений вспомогательной переменной t для нахождения х следовало использовать подстановку √ x = t , а не x = t 2 .
J Правильное решение.
При решении иррациональных уравнений учащиеся чаще всего применяют метод возведения в соответствующую степень. В результате этого решения иррациональных уравнений получаются громоздкими и не всегда доводятся до конца .
K Упражнение. Решить уравнение (x^2-4x-sqrt<2x^2-8x+12>=6.)
L Неправильное (нерациональное) решение.
Чаще всего данное уравнение начинают решать так:
Нередко продолжения решения не следует, так как с полученным уравнением четвертой степени справится не каждый.
Комментарий . В качестве альтернативы можно предложить способ введения новой переменной.
J Правильное решение.
и исходное уравнение принимает вид:
А дальше все просто:
Комментарий . Числа –2 и 6 не подвергались проверке осознанно. В данном случае после возведения в квадрат не могли появиться посторонние корни, так как и квадратный корень, и подкоренное выражение после возведения в квадрат заведомо равны положительным числам.
Ошибки, связанные с использованием модуля
При решении уравнений, в тех случаях, когда необходимо использовать понятия модуля и арифметического корня , допускаются серьезные ошибки, связанные либо с незнанием, либо с непониманием этих понятий.
K Упражнение 1. Решить уравнение (sqrt=9.)
L Неправильное решение.
J Правильное решение.
K Упражнение 2. Решить уравнение (sqrt<(x+3)^2>=x+3.)
L Неправильное решение.
Ответ: корнем данного уравнения является любое действительное число.
J Правильное решение.
Учитывая, что решение уравнений, содержащих модуль, часто вызывает затруднения, приведем полное и развернутое решение одного из таких уравнений.
K Упражнение. Решить уравнение |x – 3| + |x –4| = 1 .
J Правильное решение.
Находим нули модулей, для |х – 3| это 3 , для |x – 4| это 4 , и разбиваем ими область допустимых значений неизвестного на числовые промежутки:
На каждом из этих промежутков исходное уравнение принимает свой вид.
1) при х ∈ (–∞; 3) исходное уравнение принимает вид:
так как 3 ∉ (–∞; 3 ) , то на этом промежутке решений нет;
2) при х ∈ [3; 4) исходное уравнение принимает вид:
что является истинным тождеством; значит, каждое число рассматриваемого промежутка [3; 4) является решением уравнения;
3) при х ∈ [4; +∞) исходное уравнение принимает вид:
так как 4 ∈ [4; +∞) , то 4 – корень уравнения.
Так как [3; 4)∪ <4>= [3; 4] , то корнями исходного уравнения являются все числа числового промежутка [3; 4] .
Подбор корней без обоснования
К ошибочным решениям можно отнести и верный подбор корня заданного уравнения, иногда просто угадывание, без доказательства его единственности .
K Упражнение. Решить уравнение х (х + 1) (х + 2) (х + 3) = 24 .
L Неправильное решение.
Подбором находят корень х = 1 из разложения 24 = 1 · 2 · 3 · 4.
Комментарий . Был подобран корень х = 1 , но не обнаружен еще один корень х = –4 , который соответствует разложению 24 = –4 · (–3) · (–2) · (–1) . Но даже если и второй корень успешно подобран, но не обосновано отсутствие других корней, то считать такое решение уравнения правильным нельзя.
J Правильное решение.
введем новую переменную x 2 + 3х + 1 = t , тогда
1) x 2 + 3х + 1 = –5, x 2 + 3х + 6 = 0, решений нет;
Наиболее распространенным методом доказательства единственности корня нестандартного уравнения является использование свойства монотонности входящих в уравнение функций . Часто при этом используется производная.
K Упражнение. Решить уравнение x 11 + 5х – 6 = 0 .
L Неправильное решение.
Методом подбора находим корень уравнения х = 1 .
Комментарий . Не приведено обоснование единственности подобранного корня уравнения.
J Правильное решение.
Корень х = 1 легко угадывается, а производная левой части равна 11x 10 + 5 и положительна на всей числовой оси. Отсюда следует монотонность функции у = x 11 + 5х – 6 , что и доказывает единственность подобранного корня.
Ошибки в логарифмических и показательных уравнениях
Для решения логарифмических и показательных уравнений используются специальные приемы, основанные на свойствах логарифмов и степеней. Рассмотрим связанные с применением этих приемов ошибки.
При решении уравнений, которые можно свести к равенству степеней с одинаковыми основаниями или с одинаковыми показателями , не всегда делаются правильные выводы.
K Упражнение 1. Решить уравнение (log7 x) 1 /3 = 1 .
L Неправильное решение.
Так как при одинаковых основаниях показатели не равны, то равенство степеней невозможно, а, значит, корней нет.
Ответ: корней нет.
J Правильное решение.
Возведем в куб обе части уравнения, тогда
K Упражнение 2. Решить уравнение (х + 5) х 2 + х – 2 = 1 .
L Неправильное решение.
Комментарий . Потерян корень х = –4 . Избежать этого можно было и при данном способе решения уравнения, если учесть, что степень равна 1 не только в случае нулевого показателя, но и в случае основания равного 1 при произвольном показателе. И тогда в дополнение к приведенному решению имеем:
J Правильное решение.
Прологарифмируем обе части уравнения по некоторому основанию, например 10, при условии х > 5 , тогда
Необходимо помнить, что:
из равенства степеней, основания которых равны единице, не следует обязательное равенство показателей этих степеней;
степенно–показательное уравнение предпочтительно решать путем логарифмирования.
При решении логарифмических уравнений часто приходится применять свойства логарифмов с одинаковыми основаниями . При применении этих свойств учащиеся часто допускают ошибки.
L Неправильное решение.
Комментарий . В решении допущены две серьезные ошибки: во-первых, произведение логарифмов двух чисел заменено логарифмом произведения этих чисел; во-вторых, при решении уравнения 3х 2 = 81x потерян корень х = 0 (этот корень, конечно, не является корнем исходного уравнения, что не оправдывает его потерю).
J Правильное решение.
K Упражнение 2. Решить уравнение lg x 2 = 4 .
L Неправильное решение.
J Правильное решение 1.
2lg |x| = 4; lg | x| = 2; |x| = 100; x = ±100.
J Правильное решение 2.
lg x 2 = lg 10000; x 2 = 10000; x = ±100.
Большие затруднения у многих учащихся возникают при выполнении действий над логарифмами с разными основаниями , так как учащиеся либо не умеют пользоваться соответствующими формулами, либо не знают их.
Следует помнить, что переход к логарифму с другим основанием может привести как к приобретению посторонних корней, так и к потере корней .
K Упражнение 1. Решить уравнение (left(log_5 +2 right)<log _<5>>^2 ;x=0.)
L Неправильное решение.
(left(1 +2 log _<5>xright)log _<5>x=0;)
Комментарий . Преобразование логарифма с основание х в логарифм с основанием 5 привело к появлению постороннего корня, так как произошло расширение ОДЗ.
J Правильное решение.
Приведенное выше решение следует дополнить указанием области допустимых значений неизвестного в исходном уравнении. Это объединение числовых промежутков (0; 1)∪(1; +∞) . И указанием того факта, что 1 ∉ (0; 1)∪(1; +∞) , а, значит, не является корнем.
K Упражнение 2. Решить уравнение (20log_<4x>sqrt+ 7log_<16x>x^3-3log _x^2=0.)
L Неправильное решение.
Комментарий . В приведенном решении потерян корень, и вот почему. Был выполнен переход к логарифму с основанием х . Это вызвало изменения в ОДЗ неизвестного. Одно из таких изменений – это х ≠ 1 . Поэтому число 1 , как возможный корень исходного уравнения, следует рассмотреть отдельно.
J Правильное решение.
Приведенное выше решение нужно дополнить лишь проверкой того, не является ли 1 корнем уравнения. Подставляем 1 в исходное уравнение и убеждаемся, что 1 – корень.
Ошибки в тригонометрических уравнениях
Выделение в отдельный подраздел тригонометрических уравнений связано стем, что при их решении применяются не только алгебраические методы. Рассмотрим наиболее типичные ошибки, которые допускают учащиеся при решении тригонометрических уравнений.
Часто можно встретить неправильную запись решения тригонометрического уравнения или лишь частное решение .
Статья. Проблемы, типичные ошибки учащихся, допускаемые при решении уравнений и неравенств.
Задание «Проблемы, типичные ошибки учащихся»
Вспоминается расхожая истина – умные люди учатся на чужих ошибках. В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная. Нужно лишь правильно относиться к ошибке, правильно ее использовать.
Обидно получать плохие оценки из-за ошибок «на ровном месте». Глупые ошибки – проблема многих учеников: случайная потеря знака, скобки, необоснованное изменение чисел, пропуски переменных и всевозможные ляпы. Сами ученики порой не могут объяснить, чем вызваны эти ошибки.
Решая уравнения и неравенства учащиеся допускают типичные ошибки:
· Незнание правил, определений, формул.
· Непонимание правил, определений, формул.
· Неумение применять правила, определения, формулы.
· Неверное применение формул.
· Невнимательное чтение условия и вопроса задания.
· Раскрытие скобок и применение формул сокращенного умножения.
Какие же проблемы, трудности общего характера возникают у учащихся при изучении математики ( их несомненно можно отнести и к трудностям, которые возникают у уч-ся при изучении темы «Уравнения и неравенства»):
· Пропуски занятий приводят к незнанию материала, пробелам в знаниях.
· Поверхностное, невдумчивое восприятие нового материала приводят к непониманию его.
· Недостаточная мозговая деятельность приводит к неумению применять правила, определения и формулы .
· Неряшливый, неаккуратный почерк ученика приводит к досадным ошибкам . Учащиеся не всегда сами понимают, что именно они написали.
· Усталость . Чрезмерная нагрузка и недостаточный сон приводит к снижению внимания, скорости мышления и, как следствие, к многочисленным ошибкам.
· Кратковременное или полное переключение внимания с одной деятельности на другую (учебную или внеучебную) приводит к утрате только что воспринятого материала, приходится все начинать сначала.
· Скорость работы. Низкая скорость выполнения мыслительных операций часто мешает ученику контролировать себя и это может стать еще одной причиной ошибки. «Зависание» с какой-нибудь одной частью задания удаляет из «оперативной памяти» информацию о другой, в которой допускается не вынужденная ошибка. Скорость работы определяется физиологией конкретного школьника и навыками выполнения тех или иных операций.
· Мотивация. Следствие низкой мотивации – потеря внимания и ошибка.
Ошибки, допускаемые обучающимися при решении уравнений и неравенств, самые разнообразные: от неверного оформления решения до ошибок логического характера.
1. Самая типичная ошибка состоит в том, что учащиеся при решении уравнений и неравенств без дополнительных пояснений используют преобразования, нарушающие равносильность, что приводит к потере корней и появлению посторонних корней.
Предлагаю на конкретных примерах рассмотреть ошибки подобного рода и определить способы их предупреждения и исправления, но прежде всего хочу обратить внимание на следующую мысль: не надо бояться приобрести посторонние корни, их можно отбросить путем проверки ,надо бояться потерять корни.
а) Решить уравнение:
log3(5 – x) = 3 – log3(–1 – x).
Это уравнение учащиеся очень часто решают следующим образом.
log3(5 – x) = 3 – log3(–1 – x), log3(5 – x) + log3(–1 – x) = 3, log3((5 – x)( –1 – x)) = 3, (5 – x)( –1 – x) = 33, x2 – 4x – 32 = 0,
Учащиеся часто, не проводя дополнительных рассуждений, записывают оба числа в ответ. Но как показывает проверка, число x = 8 не является корнем исходного уравнения, так как при x = 8 левая и правая части уравнения теряют смысл. Проверка показывает, что число x = –4 является корнем заданного уравнения.
б) Решить уравнение
Область определения исходного уравнения задается системой
Для решения заданного уравнения перейдем к логарифму по основанию x, получим
Мы видим, что левая и правая части этого последнего уравнения при x = 1 не определены, но это число является корнем исходного уравнения (убедиться в этом можно путем непосредственной подстановки). Таким образом, формальный переход к новому основанию привел к потере корня. Чтобы избежать потери корня x = 1, следует указать, что новое основание должно быть положительным числом, отличным от единицы, и рассмотреть отдельно случай x = 1.
2. Целая группа ошибок, вернее сказать недочетов, состоит в том, что учащиеся не уделяют должного внимания нахождению области определения уравнений, хотя именно она в ряде случаев есть ключ к решению.
3. Типичной ошибкой учащихся является то, что они не владеют на нужном уровне определениями понятий, формулами, формулировками теорем, алгоритмами. Хочу подтвердить сказанное следующим примером.
Ученик предлагает следующее ошибочное решение этого уравнения:
х = –2.
Поверка показывает, что х = –2 не является корнем исходного уравнения.
Напрашивается вывод, что заданное уравнение корней не имеет.
Однако это не так. Выполнив подстановку х = –4 в заданное уравнение, мы можем убедиться, что это корень.
Предлагаю проанализировать, почему произошла потеря корня.
В исходном уравнении выражения х и х + 3 могут быть одновременно оба отрицательными или оба положительными, но при переходе к уравнению эти же выражения могут быть только положительными. Следовательно, произошло сужение области определения, что и привело к потере корней.
Чтобы избежать потери корня, можно поступить следующим образом: перейти в исходном уравнении от логарифма суммы к логарифму произведения. Возможно в этом случае появление посторонних корней, но от них, путем подстановки, можно освободиться.
4. Многие ошибки, допускаемые при решении уравнений и неравенств, являются следствием того, что учащиеся очень часто пытаются решать задачи по шаблону, то есть привычным путем. Предлагаю рассмотреть это на следующем примере.
Попытка решать это неравенство привычными алгоритмическими способами не приведет к ответу. Решение здесь должно состоять в оценке значений каждого слагаемого левой части неравенства на области определения неравенства.
Найдем область определения неравенства:
Для всех x из промежутка (9;10] выражение имеет положительные значения (значения показательной функции всегда положительны).
Для всех x из промежутка (9;10] выражение ( x – 9) имеет положительные значения, а выражение lg(x – 9) имеет значения отрицательные или ноль, тогда выражение
– (x – 9) lg(x – 9) положительно или равно нулю.
Окончательно имеем x ∈ (9;10]. Хочу заметить, что при таких значениях переменной каждое слагаемое, стоящее в левой части неравенства, положительно (второе слагаемое может быть равно нулю), а значит их сумма всегда больше нуля. Следовательно, решением исходного неравенства является промежуток (9;10].
5. Одна из ошибок связана с графическим решением уравнений.
Некоторые учащиеся, решая это уравнение графически (хочу отметить, что его другими элементарными способами решить нельзя), получают лишь один корень (он является абсциссой точки, лежащей на прямой y = x), ибо графики функций
и
−
это графики взаимно обратных функций.
На самом деле исходное уравнение имеет три корня: один из них является абсциссой точки, лежащей на биссектрисе первого координатного угла y = x, другой корень и третий корень
Убедиться в справедливости сказанного можно непосредственной подстановкой чисел
и
в заданное уравнение.
Этот пример удачно иллюстрирует следующий вывод: графическое решение уравнения f(x) = g(x) “безупречно”, если обе функции «разномонотонны» (одна из них возрастает, а другая – убывает), и недостаточно математически корректно в случае одномонотонных функций (обе либо одновременно убывают, либо одновременно возрастают).
6. Ряд типичных ошибок связан с тем, что учащиеся не совсем корректно решают уравнения и неравенства на основе функционального подхода. Остановлюсь на типичных ошибки такого рода.
а) Решить уравнение x х = x.
Функция, стоящая в левой части уравнения, – показательно-степенная и раз так, то на основание степени следует наложить такие ограничения: x > 0, x ≠ 1. Прологарифмируем обе части заданного уравнения:
или
Откуда имеем x = 1.
Логарифмирование не привело к сужению области определения исходного уравнения. Но тем не менее произошла потеря двух корней уравнения; непосредственным усмотрением мы находим, что x = 1 и x = –1 являются корнями исходного уравнения.
7. При решении неравенств с помощью подстановки мы всегда сначала решаем новое неравенство относительно новой переменной, и лишь в его решении делаем переход к старой переменной.
Школьники очень часто ошибочно делают обратный переход раньше.Этого делать не следует.
8.Хочу привести пример еще одной ошибки, связанной с решением неравенств.
.
Привожу ошибочное решение, которое очень часто предлагают учащиеся.
Возведем обе части исходного неравенства в квадрат. Будем иметь:
,
откуда получаем неверное числовое неравенство , что позволяет сделать вывод: заданное неравенство не имеет решений.
Однако полученный вывод неверен, например, при х = 1000 имеем
,
,
.
Полученное числовое неравенство верно, а значит х = 1000 является решением.
Значит, заданное неравенство имеет решение, и, следовательно, приведенное выше решение ошибочно.
Привожу правильное решение. Найдем область определения исходного неравенства. Она задается системой
или
откуда
.
Ясно, что на интервале (10;1000) нет решений, ибо левая часть заданного неравенства при любом х из этого интервала не имеет смысла.
Рассмотрим два случая.
а) , откуда х > 100. С учетом области определения исходного неравенства имеем промежуток
. Для всех х из этого промежутка левая часть исходного неравенства неотрицательна (как значение арифметического квадратного корня), а правая часть – отрицательна. Делаем вывод о том, что
– решение заданного неравенства.
б) , откуда
. С учетом области определения исходного неравенства имеем промежуток
. Для всех х из промежутка
имеют смысл обе части неравенства и они имеют неотрицательные значения, значит обе части заданного неравенства мы можем возвести в квадрат. Будем иметь:
, откуда
. Это неверное числовое неравенство позволяет сделать вывод: значения х из промежутка
решениями исходного неравенства не являются.
Ответ: .
9. Типичная ошибка при решении уравнений, неравенств и их систем состоит в том, что неверно преобразовываются выражения.
Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления.
Необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.
Самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления.
Пример неосознанного применения алгоритма: получив уравнение sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x .
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок.
Систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого подходят задания типа «найди ошибку в решении». Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся.
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Эти навыки состоят из двух частей:
а) умения обнаружить ошибку;
б) умения её объяснить и исправить.
В процессе обучения применяются несколько приёмов самоконтроля, которые помогают обнаружить допущенные ошибки и своевременно их исправить. К ним относятся:
· проверка вычисления и тождественного преобразования путём выполнения обратного действия или преобразования;
· проверка правильности решения задач путём составления и решения задач, обратных к данной;
· оценка результата решения задачи с точки зрения здравого смысла;
· проверка аналитического решения графическим способом.
Способы исправления и предупреждения ошибок
Свести ошибки к минимуму способствуют следующие профилактические меры:
- Тексты письменных заданий должны быть удобными для восприятия: грамотно сформулированными, хорошо читаемыми.
- Активная устная отработка основных ЗУН, регулярный разбор типичных ошибок.
- При объяснении нового материала предугадать ошибку и подобрать систему заданий на отработку правильного усвоения понятия. Акцентировать внимание на каждом элементе формулы, выполнение разнотипных заданий позволит свести ошибочность к минимуму.
- Подбирать задания, вызывающие интерес, формирующие устойчивое внимание.
- Прочному усвоению (а значит, отсутствию ошибок) способствуют правила, удобные для запоминания, четкие алгоритмы, следуя которым заведомо придешь к намеченной цели.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок. В математике, как ни в какой другой науке, особенно сильна взаимосвязь материала. Изучение и понимание последующего невозможно без знания предыдущего, отсюда неизбежность повторения на каждом уроке. При объяснении нового материала следует использовать ряд определений и теорем, которые были изучены ранее.
источники:
http://math4school.ru/oshibki_v_uravnenijah.html
http://znanio.ru/media/statya_problemy_tipichnye_oshibki_uchaschihsya_dopuskaemye_pri_reshenii_uravnenij_i_neravenstv-173622
Основные ошибки при изучении математики и как их избежать
Изучение математики может быть вызовом для многих студентов, и в процессе учебы часто возникают ошибки. В этой статье мы рассмотрим несколько основных ошибок, которые могут возникнуть при изучении математики, и предложим решения для их преодоления.
Ошибка №1: Плохая организация учебного процесса
Многие студенты изучают математику на последнем месте, откладывая ее на потом, когда есть время. Это приводит к тому, что они не успевают усвоить материал в нужный срок и уже потом сталкиваются с проблемами при выполнении заданий и контрольных работ.
Как избежать ошибки: Организуйте свою учебу таким образом, чтобы математика была в приоритете, особенно если вы знаете, что этот предмет вызывает у вас трудности. Планируйте время для занятий, выполняйте домашнее задание, и не оставляйте ничего на потом.
Ошибка №2: Недостаточная практика
Математика — это предмет, который требует многократной практики. Если вы не уделяете достаточно времени решению задач, то вас ждут трудности на экзаменах и контрольных работах.
Как избежать ошибки: Решайте задачи регулярно и старайтесь не откладывать их на потом. Выполняйте домашнее задание и ищите дополнительные упражнения для практики.
Ошибка №3: Неправильное понимание материала
Математика — это логический и абстрактный предмет, который может вызвать трудности в понимании у тех, кто только начал изучать его. Многие студенты отдают предпочтение запоминанию формул и алгоритмов, не понимая их сути, что может привести к проблемам в более продвинутых темах.
Как избежать ошибки: Пользуйтесь логическим подходом при решении задач и попытайтесь понять, какие принципы лежат в основе каждой формулы или алгоритма. Стремитесь не просто запомнить правила, но и понимать, как они работают.
Ошибка №4: Неправильное использование формул и алгоритмов
Использование неправильной формулы или алгоритма может привести к ошибочному ответу и неправильному пониманию темы в целом.
Как избежать ошибки: Прежде чем использовать формулу или алгоритм, убедитесь, что вы правильно понимаете, как его использовать. Разбирайтесь в том, как и где его применять, и убеждайтесь, что применяете его в правильном контексте.
Ошибка №5: Отсутствие подготовки к экзамену
Подготовка к экзамену — это длительный процесс, который требует времени, усилий и организации. Если студент изучает материал только ближе к сроку экзамена, он может столкнуться с трудностями в запоминании информации и выполнении заданий.
Как избежать ошибки: Начинайте готовиться к экзамену заранее. Разбейте материал на блоки и распределите их по времени, чтобы успеть изучить всю необходимую информацию до экзамена.
В заключение можно сказать, что изучение математики требует организации, правильного понимания материала, а также многократной практики. Если вы избегаете вышеописанных ошибок, то можете быть уверены, что ваше усвоение математических знаний будет более эффективным.